Skip to main content

2021 | OriginalPaper | Buchkapitel

Mathematical Modeling and Experimental Verification of the Proneural Wave

verfasst von : Yoshitaro Tanaka, Tetsuo Yasugi

Erschienen in: Methods of Mathematical Oncology

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatio-temporal pattern formation during development is regulated by interactions of multiple signaling pathways. To understand complex signaling networks, we used the Drosophila visual system as a model because neural differentiation progresses in a spatiotemporally ordered manner. During the development of the visual system, a wave of differentiation, called the proneural wave, sweeps across the brain surface and determines the timing of differentiation of neuroepithelial cells into neuroblasts, which are neural stem cells in Drosophila. Propagation of the proneural wave is regulated through a combination of signaling pathways, including the Notch, EGF, and JAK/STAT. We combined mathematical modeling with in vivo experiments, the results of which revealed that Notch-mediated lateral inhibition and EGF-mediated reaction diffusion determine the speed of progression of the proneural wave. We reported that JAK/STAT signaling has a noise-canceling function to assure robust neuroblast differentiation. Furthermore, we introduced a continuation method from spatially discretized models while conserving the cell size and lattice. This mathematical method enables us to introduce information from spatially discrete to spatially continuous models, rendering it suitable for applications in both experimental and mathematical analyses. Our interdisciplinary studies have revealed new functions of signaling pathways that have previously been difficult to address by conventional biological experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yasugi, T., Nishimura, T.: Temporal regulation of the generation of neuronal diversity in Drosophila. Dev. Growth Differ. 58(1), 73–87 (2016)CrossRef Yasugi, T., Nishimura, T.: Temporal regulation of the generation of neuronal diversity in Drosophila. Dev. Growth Differ. 58(1), 73–87 (2016)CrossRef
2.
Zurück zum Zitat Sato, M., Suzuki, T., Nakai, Y.: Waves of differentiation in the fly visual system. Dev. Biol. 380(1), 1–11 (2013)CrossRef Sato, M., Suzuki, T., Nakai, Y.: Waves of differentiation in the fly visual system. Dev. Biol. 380(1), 1–11 (2013)CrossRef
3.
Zurück zum Zitat Sato, M., Yasugi, T., Trush, O.: Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci. Res. 138, 49–58 (2019)CrossRef Sato, M., Yasugi, T., Trush, O.: Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci. Res. 138, 49–58 (2019)CrossRef
4.
Zurück zum Zitat Nassif, C., Noveen, A., Hartenstein, V.: Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J. Comput. Neurol. 455(4), 417–434 (2003) Nassif, C., Noveen, A., Hartenstein, V.: Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J. Comput. Neurol. 455(4), 417–434 (2003)
5.
Zurück zum Zitat Egger, B., Boone, J.Q., Stevens, N.R., Brand, A.H., Doe, C.Q.: Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007)CrossRef Egger, B., Boone, J.Q., Stevens, N.R., Brand, A.H., Doe, C.Q.: Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007)CrossRef
6.
Zurück zum Zitat Yasugi, T., Umetsu, D., Murakami, S., Sato, M., Tabata, T.: Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135(8), 1471–1480 (2008)CrossRef Yasugi, T., Umetsu, D., Murakami, S., Sato, M., Tabata, T.: Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135(8), 1471–1480 (2008)CrossRef
7.
Zurück zum Zitat Kawamori, H., Tai, M., Sato, M., Yasugi, T., Tabata, T.: Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev. Growth Differ. 53(5), 653–667 (2011)CrossRef Kawamori, H., Tai, M., Sato, M., Yasugi, T., Tabata, T.: Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev. Growth Differ. 53(5), 653–667 (2011)CrossRef
8.
Zurück zum Zitat Reddy, B.V., Rauskolb, C., Irvine, K.D.: Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14), 2397–2408 (2010)CrossRef Reddy, B.V., Rauskolb, C., Irvine, K.D.: Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14), 2397–2408 (2010)CrossRef
9.
Zurück zum Zitat Yasugi, T., Sugie, A., Umetsu, D., Tabata, T.: Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19), 3193–3203 (2010)CrossRef Yasugi, T., Sugie, A., Umetsu, D., Tabata, T.: Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19), 3193–3203 (2010)CrossRef
10.
Zurück zum Zitat Weng, M., Haenfler, J.M., Lee, C.Y.: Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev. Neurobiol. 72(11), 1376–1390 (2012)CrossRef Weng, M., Haenfler, J.M., Lee, C.Y.: Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev. Neurobiol. 72(11), 1376–1390 (2012)CrossRef
11.
Zurück zum Zitat Wang, W., Liu, W., Wang, Y., Zhou, L., Tang, X., Luo, H.: Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev. Biol. 350(2), 414–428 (2011)CrossRef Wang, W., Liu, W., Wang, Y., Zhou, L., Tang, X., Luo, H.: Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev. Biol. 350(2), 414–428 (2011)CrossRef
12.
Zurück zum Zitat Orihara-Ono, M., Toriya, M., Nakao, K., Okano, H.: Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev. Biol. 351(1), 163–175 (2011)CrossRef Orihara-Ono, M., Toriya, M., Nakao, K., Okano, H.: Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev. Biol. 351(1), 163–175 (2011)CrossRef
13.
Zurück zum Zitat Ngo, K.T., et al.: Concomitant requirement for Notch and JAK/STAT signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev. Biol. 346(2), 284–295 (2010)CrossRef Ngo, K.T., et al.: Concomitant requirement for Notch and JAK/STAT signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev. Biol. 346(2), 284–295 (2010)CrossRef
14.
Zurück zum Zitat Wang, W., Li, Y., Zhou, L., Yue, H., Luo, H.: Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe. Biochem. Biophys. Res. Commun. 410(4), 714–720 (2011)CrossRef Wang, W., Li, Y., Zhou, L., Yue, H., Luo, H.: Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe. Biochem. Biophys. Res. Commun. 410(4), 714–720 (2011)CrossRef
15.
Zurück zum Zitat Richter, C., Oktaba, K., Steinmann, J., Muller, J., Knoblich, J.A.: The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat. Cell Biol. 13(9), 1029–1039 (2011)CrossRef Richter, C., Oktaba, K., Steinmann, J., Muller, J., Knoblich, J.A.: The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat. Cell Biol. 13(9), 1029–1039 (2011)CrossRef
16.
Zurück zum Zitat Sato, M., Yasugi, T., Minami, Y., Miura, T., Nagayama, M.: Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc. Natl. Acad. Sci. U.S.A. 113(35), E5153–5162 (2016)CrossRef Sato, M., Yasugi, T., Minami, Y., Miura, T., Nagayama, M.: Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc. Natl. Acad. Sci. U.S.A. 113(35), E5153–5162 (2016)CrossRef
17.
Zurück zum Zitat Simpson, P.: Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109(3), 509–519 (1990)CrossRef Simpson, P.: Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109(3), 509–519 (1990)CrossRef
18.
Zurück zum Zitat Artavanis-Tsakonas, S., Rand, M.D., Lake, R.J.: Notch signaling: cell fate control and signal integration in development. Science 284(5415), 770–776 (1999)CrossRef Artavanis-Tsakonas, S., Rand, M.D., Lake, R.J.: Notch signaling: cell fate control and signal integration in development. Science 284(5415), 770–776 (1999)CrossRef
19.
Zurück zum Zitat Miller, A.C., Lyons, E.L., Herman, T.G.: cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 19(16), 1378–1383 (2009)CrossRef Miller, A.C., Lyons, E.L., Herman, T.G.: cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 19(16), 1378–1383 (2009)CrossRef
20.
Zurück zum Zitat del Alamo, D., Schweisguth, F.: Notch signalling: receptor cis-inhibition to achieve directionality. Curr. Biol. 19(16), R683–684 (2009)CrossRef del Alamo, D., Schweisguth, F.: Notch signalling: receptor cis-inhibition to achieve directionality. Curr. Biol. 19(16), R683–684 (2009)CrossRef
21.
Zurück zum Zitat Sprinzak, D., et al.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294), 86–90 (2010)CrossRef Sprinzak, D., et al.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294), 86–90 (2010)CrossRef
22.
Zurück zum Zitat Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13(1), 43–50 (2003)CrossRef Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13(1), 43–50 (2003)CrossRef
23.
Zurück zum Zitat Bolos, V., Grego-Bessa, J., de la Pompa, J.L.: Notch signaling in development and cancer. Endocr. Rev. 28(3), 339–363 (2007)CrossRef Bolos, V., Grego-Bessa, J., de la Pompa, J.L.: Notch signaling in development and cancer. Endocr. Rev. 28(3), 339–363 (2007)CrossRef
24.
Zurück zum Zitat Liao, B.K., Oates, A.C.: Delta-Notch signalling in segmentation. Arthropod Struct. Dev. 46(3), 429–447 (2017)CrossRef Liao, B.K., Oates, A.C.: Delta-Notch signalling in segmentation. Arthropod Struct. Dev. 46(3), 429–447 (2017)CrossRef
25.
Zurück zum Zitat Barad, O., Hornstein, E., Barkai, N.: Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr. Opin. Cell Biol. 23(6), 663–667 (2011)CrossRef Barad, O., Hornstein, E., Barkai, N.: Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr. Opin. Cell Biol. 23(6), 663–667 (2011)CrossRef
26.
Zurück zum Zitat Wang, H., Chen, X., He, T., Zhou, Y., Luo, H.: Evidence for tissue-specific JAK/STAT target genes in Drosophila optic lobe development. Genetics 195(4), 1291–1306 (2013)CrossRef Wang, H., Chen, X., He, T., Zhou, Y., Luo, H.: Evidence for tissue-specific JAK/STAT target genes in Drosophila optic lobe development. Genetics 195(4), 1291–1306 (2013)CrossRef
27.
Zurück zum Zitat Tanaka, Y., Yasugi, T., Nagayama, M., Sato, M., Ei, S.I.: JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise. Sci. Rep. 8(1), 12484 (2018)CrossRef Tanaka, Y., Yasugi, T., Nagayama, M., Sato, M., Ei, S.I.: JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise. Sci. Rep. 8(1), 12484 (2018)CrossRef
28.
Zurück zum Zitat Arias, A.M., Hayward, P.: Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7(1), 34–44 (2006)CrossRef Arias, A.M., Hayward, P.: Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7(1), 34–44 (2006)CrossRef
29.
Zurück zum Zitat Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H.: Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441(7094), 719–723 (2006)CrossRef Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H.: Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441(7094), 719–723 (2006)CrossRef
30.
Zurück zum Zitat Naoki, H., Akiyama, R., Sari, D.W.K., Ishii, S., Bessho, Y., Matsui, T.: Noise-resistant developmental reproducibility in vertebrate somite formation. PLoS Comput. Biol. 15(2), e1006579 (2019) Naoki, H., Akiyama, R., Sari, D.W.K., Ishii, S., Bessho, Y., Matsui, T.: Noise-resistant developmental reproducibility in vertebrate somite formation. PLoS Comput. Biol. 15(2), e1006579 (2019)
31.
Zurück zum Zitat Ei, S., Ishii, H., Sato, M., Tanaka, Y., Wang, M., Yasugi, T.: A continuation method for spatially discretized models with nonlocal interactions conserving size and shape of cells and lattices. J. Math. Biol. 81, 981-1028 (2020) Ei, S., Ishii, H., Sato, M., Tanaka, Y., Wang, M., Yasugi, T.: A continuation method for spatially discretized models with nonlocal interactions conserving size and shape of cells and lattices. J. Math. Biol. 81, 981-1028 (2020)
32.
Zurück zum Zitat Ayukawa, T., et al.: Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep. 8, 610–621 (2014)CrossRef Ayukawa, T., et al.: Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep. 8, 610–621 (2014)CrossRef
33.
Zurück zum Zitat Doumic, M., Goudon, T., Lepoutre, T.: Scaling limit of a discrete prion dynamics model. Commun. Math. Sci. 7, 839–865 (2009)MathSciNetCrossRef Doumic, M., Goudon, T., Lepoutre, T.: Scaling limit of a discrete prion dynamics model. Commun. Math. Sci. 7, 839–865 (2009)MathSciNetCrossRef
34.
Zurück zum Zitat Laurençot, P., Mischler, S.: From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinb. Sect. A. 132(5), 1219–1248 (2002)MathSciNetCrossRef Laurençot, P., Mischler, S.: From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinb. Sect. A. 132(5), 1219–1248 (2002)MathSciNetCrossRef
35.
Zurück zum Zitat Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)MathSciNetCrossRef Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)MathSciNetCrossRef
36.
Zurück zum Zitat Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinb. Sect. A 137, 727–755 (2007)MathSciNetCrossRef Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinb. Sect. A 137, 727–755 (2007)MathSciNetCrossRef
Metadaten
Titel
Mathematical Modeling and Experimental Verification of the Proneural Wave
verfasst von
Yoshitaro Tanaka
Tetsuo Yasugi
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4866-3_3

Premium Partner