Skip to main content
Erschienen in: Programming and Computer Software 8/2023

01.12.2023

Mathematical Modeling of Turbulent Mixing in Gas Systems with a Chevron Contact Boundary using NUT3D, BIC3D, EGAK, and MIMOSA Numerical Codes

verfasst von: M. D. Bragin, N. V. Zmitrenko, V. V. Zmushko, P. A. Kuchugov, E. V. Levkina, K. V. Anisiforov, N. V. Nevmerzhitskiy, A. N. Razin, E. D. Senkovskiy, V. P. Statsenko, V. F. Tishkin, Yu. V. Tret’yachenko, Yu. V. Yanilkin

Erschienen in: Programming and Computer Software | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents results of computational and experimental studies of the evolution of turbulent mixing in three-layer gas systems with the development of hydrodynamic instabilities, in particular, the Richtmyer–Meshkov and Kelvin–Helmholtz instabilities, under the action of shock waves. One of the contact boundaries between gases is flat, while the other one has the form of a chevron. The numerical simulations are carried out both with and without initial perturbations of contact boundaries. It is shown that the roughness of the contact boundary significantly affects the width of the mixing zone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Richtmyer, R.D., Taylor instability in shock acceleration of compressed fluids, Commun. Pure Appl. Math., 1960. Richtmyer, R.D., Taylor instability in shock acceleration of compressed fluids, Commun. Pure Appl. Math., 1960.
2.
Zurück zum Zitat Meshkov, E.E., Instability of the interface between two gases that is accelerated by a shock wave, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1969, pp. 151–158. Meshkov, E.E., Instability of the interface between two gases that is accelerated by a shock wave, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1969, pp. 151–158.
3.
Zurück zum Zitat Helmholtz, H.L.F., Uber discontinuilisch Flussigkeits-Bewegungen, Monatsberichte Konigl. Preus. Akad. Wiss. Berlin, 1868. Helmholtz, H.L.F., Uber discontinuilisch Flussigkeits-Bewegungen, Monatsberichte Konigl. Preus. Akad. Wiss. Berlin, 1868.
4.
Zurück zum Zitat Taylor, G.I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes: I, Proc. R. Soc., 1950, vol. A201. Taylor, G.I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes: I, Proc. R. Soc., 1950, vol. A201.
5.
Zurück zum Zitat Bel’kov, S.A., Bondarenko, S.V., Demchenko, N.N., et al., Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by multi-beam megajoule laser, PPCF, 2019.CrossRef Bel’kov, S.A., Bondarenko, S.V., Demchenko, N.N., et al., Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by multi-beam megajoule laser, PPCF, 2019.CrossRef
6.
Zurück zum Zitat Nevmerzhitskii, N.V., Gidrodinamicheskie neustoichivosti i turbulentnoe peremeshivanie veshchestv. Laboratornoe modelirovanie (Hydrodynamic Instabilities and Turbulent Mixing of Substances: Laboratory modeling), Mikhailov, A.L., Ed., Sarov: RFYaTs VNIIEF, 2018. Nevmerzhitskii, N.V., Gidrodinamicheskie neustoichivosti i turbulentnoe peremeshivanie veshchestv. Laboratornoe modelirovanie (Hydrodynamic Instabilities and Turbulent Mixing of Substances: Laboratory modeling), Mikhailov, A.L., Ed., Sarov: RFYaTs VNIIEF, 2018.
7.
Zurück zum Zitat Luo, X., Guan, B., Si, T., et al., Richtmyer–Meshkov instability of a three-dimensional SF6–air interface with a minimum-surface feature, Phys. Rev. E, 2016. Luo, X., Guan, B., Si, T., et al., Richtmyer–Meshkov instability of a three-dimensional SF6–air interface with a minimum-surface feature, Phys. Rev. E, 2016.
8.
Zurück zum Zitat Brouillette, M., The Richtmyer–Meshkov instability, Annu. Rev. Fluid Mech., 2002. Brouillette, M., The Richtmyer–Meshkov instability, Annu. Rev. Fluid Mech., 2002.
9.
Zurück zum Zitat Nevmerzhitskii, N.V., Razin, A.N., Trutnev, Yu.A., et al., Study of the development of turbulent mixing in three-layer gas systems with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 12–17. Nevmerzhitskii, N.V., Razin, A.N., Trutnev, Yu.A., et al., Study of the development of turbulent mixing in three-layer gas systems with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 12–17.
10.
Zurück zum Zitat Kozlov, V.I., Razin, A.I., Shaporenko, E.V., et al., Results of KORONA-based simulation of gas-dynamic experiments on turbulent mixing in two-dimensional flows, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2009, pp. 31–38. Kozlov, V.I., Razin, A.I., Shaporenko, E.V., et al., Results of KORONA-based simulation of gas-dynamic experiments on turbulent mixing in two-dimensional flows, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2009, pp. 31–38.
11.
Zurück zum Zitat Razin, A.N., Interaction of a shock wave with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 3–11. Razin, A.N., Interaction of a shock wave with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 3–11.
12.
Zurück zum Zitat Henderson, L.F., On the refraction of shock waves, J. Fluid Mech., 1989, pp. 365–386. Henderson, L.F., On the refraction of shock waves, J. Fluid Mech., 1989, pp. 365–386.
13.
Zurück zum Zitat Hahn, M., Drikakis, D., Youngs, D.L., et al., Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshoked flow, Phys. Fluids, 2011. Hahn, M., Drikakis, D., Youngs, D.L., et al., Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshoked flow, Phys. Fluids, 2011.
14.
Zurück zum Zitat Razin, A.N., Modelirovanie neustoichivosti i turbulentnogo peremeshivaniya v sloistykh sistemakh (Modeling Instability and Turbulent Mixing in Layered Systems), Sarov: RFYaTs VNIIEF, 2010. Razin, A.N., Modelirovanie neustoichivosti i turbulentnogo peremeshivaniya v sloistykh sistemakh (Modeling Instability and Turbulent Mixing in Layered Systems), Sarov: RFYaTs VNIIEF, 2010.
15.
Zurück zum Zitat Zmushko, V.V., Razin, A.N., and Sinel’nikova, A.A., Influence of the initial roughness of interfaces on the instability development after shock-wave passage, J. Appl. Mech. Tech. Phys., 2022, vol. 63, pp. 400–407.MathSciNetCrossRef Zmushko, V.V., Razin, A.N., and Sinel’nikova, A.A., Influence of the initial roughness of interfaces on the instability development after shock-wave passage, J. Appl. Mech. Tech. Phys., 2022, vol. 63, pp. 400–407.MathSciNetCrossRef
16.
Zurück zum Zitat Bodrov, E.V., Zmushko, V.V., Nevmerzhitskii, N.V., Razin, A.N., Sen’kovskii, E.D., and Sotskov, E.A., Computational and experimental investigation of the development of turbulent mixing in a gas layering in passage of a shock wave, Fluid Dyn., 2018, vol. 53, pp. 385–393.MathSciNetCrossRef Bodrov, E.V., Zmushko, V.V., Nevmerzhitskii, N.V., Razin, A.N., Sen’kovskii, E.D., and Sotskov, E.A., Computational and experimental investigation of the development of turbulent mixing in a gas layering in passage of a shock wave, Fluid Dyn., 2018, vol. 53, pp. 385–393.MathSciNetCrossRef
17.
Zurück zum Zitat Smith, A.V., Holder, D.A., Barton, C.J., et al., Shock tube experiments on Richtmyer–Meshkov instability across a chevron profiled interface, Proc. 8th IWPCTM, 2001. Smith, A.V., Holder, D.A., Barton, C.J., et al., Shock tube experiments on Richtmyer–Meshkov instability across a chevron profiled interface, Proc. 8th IWPCTM, 2001.
18.
Zurück zum Zitat Holder, D.A. and Barton, C.J., Shock tube Richtmyer–Meshkov experiments: Inverse chevron and half height, Proc. 9th IWPCTM, 2004. Holder, D.A. and Barton, C.J., Shock tube Richtmyer–Meshkov experiments: Inverse chevron and half height, Proc. 9th IWPCTM, 2004.
19.
Zurück zum Zitat Holder, D.A., Smith, A.V., Barton, C.J., et al., Shock-tube experiments on Richtmyer–Meshkov instability growth using an enlarged double-bump perturbation, Laser Part. Beams, 2003. Holder, D.A., Smith, A.V., Barton, C.J., et al., Shock-tube experiments on Richtmyer–Meshkov instability growth using an enlarged double-bump perturbation, Laser Part. Beams, 2003.
20.
Zurück zum Zitat Ladonkina, M.E., Chislennoe Modelirovanie turbulentnogo peremeshivaniya s ispol’zovaniem vysokoproizvoditel’nykh sistem (Numerical Simulation of Turbulent Mixing Using High-Performance Systems), Moscow: Inst. Mat. Model., Ross. Akad. Nauk, 2005. Ladonkina, M.E., Chislennoe Modelirovanie turbulentnogo peremeshivaniya s ispol’zovaniem vysokoproizvoditel’nykh sistem (Numerical Simulation of Turbulent Mixing Using High-Performance Systems), Moscow: Inst. Mat. Model., Ross. Akad. Nauk, 2005.
21.
Zurück zum Zitat Kuchugov, P.A., Dinamika protsessov turbulentnogo peremeshivaniya v lazernykh mishenyakh (Dynamics of Turbulent Mixing Processes in Laser Targets), Moscow: Inst. Prikl. Mat. im. Keldysha, 2014. Kuchugov, P.A., Dinamika protsessov turbulentnogo peremeshivaniya v lazernykh mishenyakh (Dynamics of Turbulent Mixing Processes in Laser Targets), Moscow: Inst. Prikl. Mat. im. Keldysha, 2014.
22.
Zurück zum Zitat Kuchugov, P.A., Modeling the implosion of a thermonuclear target on hybrid computing systems, Sb. Tr. Mezhdunar. Nauchn. Konf. “Parallel’nye vychislitel’nye tekhnologii” (Proc. Int. Sci. Conf. Parallel Computing Technologies), Kazan, 2017, pp. 399–409. Kuchugov, P.A., Modeling the implosion of a thermonuclear target on hybrid computing systems, Sb. Tr. Mezhdunar. Nauchn. Konf. “Parallel’nye vychislitel’nye tekhnologii” (Proc. Int. Sci. Conf. Parallel Computing Technologies), Kazan, 2017, pp. 399–409.
23.
Zurück zum Zitat Bragin, M.D. and Rogov, B.V., On the exact spatial splitting of a multidimensional scalar quasilinear hyperbolic conservation law, Dokl. Akad. Nauk, 2016, vol. 469, no. 2, pp. 143–147.MathSciNet Bragin, M.D. and Rogov, B.V., On the exact spatial splitting of a multidimensional scalar quasilinear hyperbolic conservation law, Dokl. Akad. Nauk, 2016, vol. 469, no. 2, pp. 143–147.MathSciNet
24.
Zurück zum Zitat Bragin, M.D., Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws, Mat. Model., 2022, vol. 34, no. 6, pp. 3–21.MathSciNet Bragin, M.D., Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws, Mat. Model., 2022, vol. 34, no. 6, pp. 3–21.MathSciNet
25.
Zurück zum Zitat Bragin, M.D. and Rogov, B.V., Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations, Appl. Numer. Math., 2020, vol. 151, pp. 229–245.MathSciNetCrossRef Bragin, M.D. and Rogov, B.V., Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations, Appl. Numer. Math., 2020, vol. 151, pp. 229–245.MathSciNetCrossRef
26.
Zurück zum Zitat Bragin, M.D., Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem, Comput. Math. Math. Phys., 2022, vol. 62, pp. 608–623.MathSciNetCrossRef Bragin, M.D., Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem, Comput. Math. Math. Phys., 2022, vol. 62, pp. 608–623.MathSciNetCrossRef
27.
Zurück zum Zitat Groom, M. and Thornber, B., The influence of the initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability, Phys. D, 2020. Groom, M. and Thornber, B., The influence of the initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability, Phys. D, 2020.
28.
Zurück zum Zitat Youngs, D.L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Phys. Fluids A, 1991. Youngs, D.L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Phys. Fluids A, 1991.
29.
Zurück zum Zitat Tishkin, V.F., Nikishin, V.V., Popov, I.V., and Favorskii, A.P., Difference schemes of three-dimensional gas dynamics for problems on development of Richtmyer–Meshkov instability, Mat. Model., 1995, pp. 15–25. Tishkin, V.F., Nikishin, V.V., Popov, I.V., and Favorskii, A.P., Difference schemes of three-dimensional gas dynamics for problems on development of Richtmyer–Meshkov instability, Mat. Model., 1995, pp. 15–25.
30.
Zurück zum Zitat Vyaznikov, K.V., Tishkin, V.F., and Favorskii, A.P., Construction of monotonic difference schemes of higher order of approximation for systems of linear differential equations with constant coefficients of hyperbolic type, Mat. Model., 1989, pp. 95–120. Vyaznikov, K.V., Tishkin, V.F., and Favorskii, A.P., Construction of monotonic difference schemes of higher order of approximation for systems of linear differential equations with constant coefficients of hyperbolic type, Mat. Model., 1989, pp. 95–120.
31.
Zurück zum Zitat Toro, E.F., Spruce, M., and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 1994, pp. 25–34. Toro, E.F., Spruce, M., and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 1994, pp. 25–34.
32.
Zurück zum Zitat Samarskii, A.A. and Sobol’, I.M., Examples of numerical calculations of temperature waves, Zh. Vychisl. Mat. Mat. Fiz., 1963, pp. 702–719. Samarskii, A.A. and Sobol’, I.M., Examples of numerical calculations of temperature waves, Zh. Vychisl. Mat. Mat. Fiz., 1963, pp. 702–719.
33.
Zurück zum Zitat Avdoshina, E.V., Bondarenko, Yu.A., Gorbunov, A.A., Dmitrieva, Yu.S., Naumov, A.O., Pronevich, S.N., Rud’ko, N.M., and Tikhomirov, B.P., Study of the accuracy of various methods for averaging the thermal conductivity coefficient on the side of an integration cell when numerically solving the heat equation, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2014. Avdoshina, E.V., Bondarenko, Yu.A., Gorbunov, A.A., Dmitrieva, Yu.S., Naumov, A.O., Pronevich, S.N., Rud’ko, N.M., and Tikhomirov, B.P., Study of the accuracy of various methods for averaging the thermal conductivity coefficient on the side of an integration cell when numerically solving the heat equation, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2014.
34.
Zurück zum Zitat Kolganov, A.S., Automation of parallelization of Fortran programs for heterogeneous clusters, Extended Abstract of Cand. Sci. Dissertation, 2020. Kolganov, A.S., Automation of parallelization of Fortran programs for heterogeneous clusters, Extended Abstract of Cand. Sci. Dissertation, 2020.
36.
Zurück zum Zitat Bakhtin, V.A. and Krukov, V.A., DVM-approach to the automation of the development of parallel programs for clusters, Program. Comput. Software, 2019, vol. 45, no. 3, pp. 121–132.CrossRef Bakhtin, V.A. and Krukov, V.A., DVM-approach to the automation of the development of parallel programs for clusters, Program. Comput. Software, 2019, vol. 45, no. 3, pp. 121–132.CrossRef
37.
Zurück zum Zitat Yanilkin, Yu.V., Belyaev, S.P., Bondarenko, Yu.A., Gavrilova, E.S., Goncharov, E.A., Gorbenko, A.D., Gorodnichev, A.V., Gubkov, E.V., Guzhova, A.R., Degtyarenko, L.I., Zharova, G.V., Kolobyanin, V.Yu., Sofronov, V.N., Stadnik, A.L., Khovrin, N.A., Chernyshova, O.N., Chistyakova, I.N., and Shemyakov, V.N., EGAK and TREK Eulerian numerical methods for modeling multidimensional flows of a multicomponent medium, Tr. RFYaTs VNIIEF. Nauchno-Issled. Izd. (Proc. RFNC-VNIIEF: Res. Ed.), Sarov: RFYaTs VNIIEF, 2008, vol. 12, pp. 54–65. Yanilkin, Yu.V., Belyaev, S.P., Bondarenko, Yu.A., Gavrilova, E.S., Goncharov, E.A., Gorbenko, A.D., Gorodnichev, A.V., Gubkov, E.V., Guzhova, A.R., Degtyarenko, L.I., Zharova, G.V., Kolobyanin, V.Yu., Sofronov, V.N., Stadnik, A.L., Khovrin, N.A., Chernyshova, O.N., Chistyakova, I.N., and Shemyakov, V.N., EGAK and TREK Eulerian numerical methods for modeling multidimensional flows of a multicomponent medium, Tr. RFYaTs VNIIEF. Nauchno-Issled. Izd. (Proc. RFNC-VNIIEF: Res. Ed.), Sarov: RFYaTs VNIIEF, 2008, vol. 12, pp. 54–65.
38.
Zurück zum Zitat Yanilkin, Yu.V., Models for closing the equations of Lagrangian gas dynamics and elastic-plasticity in multicomponent cells, Part 1: Isotropic models, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2017, no. 3, pp. 3–21. Yanilkin, Yu.V., Models for closing the equations of Lagrangian gas dynamics and elastic-plasticity in multicomponent cells, Part 1: Isotropic models, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2017, no. 3, pp. 3–21.
39.
Zurück zum Zitat Yanilkin, Yu.V., Kolobyanin, V.Yu., Chistyakova, I.N., and Eguzhova, M.Yu., Application of the PPM method in calculations using the EGAK and TREK methods, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2005, no. 4, pp. 69–79. Yanilkin, Yu.V., Kolobyanin, V.Yu., Chistyakova, I.N., and Eguzhova, M.Yu., Application of the PPM method in calculations using the EGAK and TREK methods, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2005, no. 4, pp. 69–79.
40.
Zurück zum Zitat Bakhrakh, S.M., Glagoleva, Yu.P., Samigulin, M.S., Frolov, V.D., Yanenko, N.N., and Yanilkin, Yu.V., Calculation of gas-dynamic flows based on the method of concentrations, Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 3, pp. 566–569. Bakhrakh, S.M., Glagoleva, Yu.P., Samigulin, M.S., Frolov, V.D., Yanenko, N.N., and Yanilkin, Yu.V., Calculation of gas-dynamic flows based on the method of concentrations, Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 3, pp. 566–569.
41.
Zurück zum Zitat Zmushko, V.V., Pletenev, F.A., Saraev, V.A., and Sofronov, I.D., Method for solving three-dimensional gas dynamics equations in mixed Lagrangian–Eulerian coordinates, Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Resheniya Zadach Mat. Fiz., 1988, no. 1, pp. 22–27. Zmushko, V.V., Pletenev, F.A., Saraev, V.A., and Sofronov, I.D., Method for solving three-dimensional gas dynamics equations in mixed Lagrangian–Eulerian coordinates, Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Resheniya Zadach Mat. Fiz., 1988, no. 1, pp. 22–27.
42.
Zurück zum Zitat Sofronov, I.D., Afanas’eva, E.A., Vinokurov, O.A., et al., MIMOSA software complex for solving multidimensional problems of continuum mechanics on the Elbrus-2 computer, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 1990, no. 2, pp. 3–9. Sofronov, I.D., Afanas’eva, E.A., Vinokurov, O.A., et al., MIMOSA software complex for solving multidimensional problems of continuum mechanics on the Elbrus-2 computer, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 1990, no. 2, pp. 3–9.
43.
Zurück zum Zitat Zmushko, V.V., Computation of convective flows and their realization in MIMOZA code, Proc. Int. Workshop New Models of Numerical Codes for Shock Wave Processes in Condensed Media, Oxford, 1997. Zmushko, V.V., Computation of convective flows and their realization in MIMOZA code, Proc. Int. Workshop New Models of Numerical Codes for Shock Wave Processes in Condensed Media, Oxford, 1997.
44.
Zurück zum Zitat Ladagin, V.K. and Pastushenko, A.M., On one scheme for calculating gas-dynamic flows, Chisl. Metody Mekh. Sploshn. Sredy, 1977, vol. 8, no. 2, pp. 66–72. Ladagin, V.K. and Pastushenko, A.M., On one scheme for calculating gas-dynamic flows, Chisl. Metody Mekh. Sploshn. Sredy, 1977, vol. 8, no. 2, pp. 66–72.
45.
Zurück zum Zitat Benson, D.J., Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev., 2002, vol. 55, no. 2, pp. 151–165.CrossRef Benson, D.J., Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev., 2002, vol. 55, no. 2, pp. 151–165.CrossRef
46.
Zurück zum Zitat Dyadechko, V. and Shashkov, M., Multi-material interface reconstruction from the moment data, Technical report LA-UR-07-0656, LANL, 2006. Dyadechko, V. and Shashkov, M., Multi-material interface reconstruction from the moment data, Technical report LA-UR-07-0656, LANL, 2006.
Metadaten
Titel
Mathematical Modeling of Turbulent Mixing in Gas Systems with a Chevron Contact Boundary using NUT3D, BIC3D, EGAK, and MIMOSA Numerical Codes
verfasst von
M. D. Bragin
N. V. Zmitrenko
V. V. Zmushko
P. A. Kuchugov
E. V. Levkina
K. V. Anisiforov
N. V. Nevmerzhitskiy
A. N. Razin
E. D. Senkovskiy
V. P. Statsenko
V. F. Tishkin
Yu. V. Tret’yachenko
Yu. V. Yanilkin
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Programming and Computer Software / Ausgabe 8/2023
Print ISSN: 0361-7688
Elektronische ISSN: 1608-3261
DOI
https://doi.org/10.1134/S0361768823080042

Weitere Artikel der Ausgabe 8/2023

Programming and Computer Software 8/2023 Zur Ausgabe

Premium Partner