Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2016

01.06.2016

Matrix-equation-based strategies for convection–diffusion equations

verfasst von: Davide Palitta, Valeria Simoncini

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection–diffusion partial differential equations with separable coefficients, dominant convection and rectangular or parallelepipedal domain. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For the considered setting, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Roughly speaking, two elliptic operators are compact – equivalent if their principal parts coincide up to a constant factor, and they have homogeneous Dirichlet conditions on the same part of the boundary.
 
2
A Matlab implementation of the algorithm is available at www.​dm.​unibo.​it/​~simoncin/​software.​html.
 
3
Other variable aggregations are possible. The one we chose allowed us to explicitly treat the first derivative in the z direction in the preconditioner.
 
4
In the application of \({\mathcal {P}}^{-1}\), the leading computational cost of KPIK is given by sparse direct solves with matrices of size \(n_xn_y\times n_xn_y\), together with the orthogonalization procedure with vectors having \(n_xn_y\) components. The same holds for the problem in (19).
 
Literatur
1.
Zurück zum Zitat Axelsson, O., Karátson, J.: Symmetric part preconditioning for the conjugate gradient method in Hilbert space. Numer. Funct. Anal. Optim. 24(5–6), 455–474 (2003)MathSciNetCrossRefMATH Axelsson, O., Karátson, J.: Symmetric part preconditioning for the conjugate gradient method in Hilbert space. Numer. Funct. Anal. Optim. 24(5–6), 455–474 (2003)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Axelsson, O., Karátson, J.: Mesh independent superlinear PCG rates via compact-equivalent operators. SIAM J. Numer. Anal. 45(4), 1945–1516 (2007)MathSciNetCrossRefMATH Axelsson, O., Karátson, J.: Mesh independent superlinear PCG rates via compact-equivalent operators. SIAM J. Numer. Anal. 45(4), 1945–1516 (2007)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation \(AX+XB=C\). Commun. ACM 15(9), 820–826 (1972)CrossRef Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation \(AX+XB=C\). Commun. ACM 15(9), 820–826 (1972)CrossRef
4.
Zurück zum Zitat Benner, Peter, Damm, Tobias: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)MathSciNetCrossRefMATH Benner, Peter, Damm, Tobias: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bickley, W.G., McNamee, J.: Matrix and other direct methods for the solution of linear difference equation. Philos. Trans. Roy. Soc. Lond. Ser. A 252, 69–131 (1960)MathSciNetCrossRefMATH Bickley, W.G., McNamee, J.: Matrix and other direct methods for the solution of linear difference equation. Philos. Trans. Roy. Soc. Lond. Ser. A 252, 69–131 (1960)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Boyle, J., Mihajlović, M.D., Scott, J.A.: HSL\_MI20: an efficient AMG preconditioner for finite element problems in 3D. Int. J. Numer. Meth. Eng. 82(1), 64–98 (2010)MathSciNetMATH Boyle, J., Mihajlović, M.D., Scott, J.A.: HSL\_MI20: an efficient AMG preconditioner for finite element problems in 3D. Int. J. Numer. Meth. Eng. 82(1), 64–98 (2010)MathSciNetMATH
7.
Zurück zum Zitat Breiten, T., Simoncini, V., Stoll, M.: Fast iterative solvers for fractional differential equations. Technical report, Alma Mater Studiorum - Università di Bologna (2014) Breiten, T., Simoncini, V., Stoll, M.: Fast iterative solvers for fractional differential equations. Technical report, Alma Mater Studiorum - Università di Bologna (2014)
8.
Zurück zum Zitat Chin, R.C.Y., Manteuffel, T.A., De Pillis, J.: ADI as a preconditioning for solving the convection–diffusion equation. SIAM J. Sci. Stat. Comput. 5(2), 281–299 (1984)MathSciNetCrossRefMATH Chin, R.C.Y., Manteuffel, T.A., De Pillis, J.: ADI as a preconditioning for solving the convection–diffusion equation. SIAM J. Sci. Stat. Comput. 5(2), 281–299 (1984)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems (2013). arXiv:1304.1222v2 Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems (2013). arXiv:​1304.​1222v2
10.
Zurück zum Zitat Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)MathSciNetCrossRefMATH Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1989) Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1989)
12.
Zurück zum Zitat Ellner, N.S., Wachspress, E.L.: New ADI model problem applications. In: Proceedings of 1986 ACM Fall Joint Computer Conference, Dallas, Texas, United States, pp. 528–534. IEEE Computer Society Press, Los Alamitos (1986) Ellner, N.S., Wachspress, E.L.: New ADI model problem applications. In: Proceedings of 1986 ACM Fall Joint Computer Conference, Dallas, Texas, United States, pp. 528–534. IEEE Computer Society Press, Los Alamitos (1986)
13.
Zurück zum Zitat Elman, H.C., Golub, G.H.: Iterative methods for cyclically reduced non-self-adjoint linear systems. Math. Comput. 54(190), 671–700 (1990)MathSciNetMATH Elman, H.C., Golub, G.H.: Iterative methods for cyclically reduced non-self-adjoint linear systems. Math. Comput. 54(190), 671–700 (1990)MathSciNetMATH
14.
Zurück zum Zitat Elman, H.C., Ramage, A.: A characterisation of oscillations in the discrete two-dimensional convection–diffusion equation. Math. Comput. 72(241), 263–288 (2001)MathSciNetCrossRefMATH Elman, H.C., Ramage, A.: A characterisation of oscillations in the discrete two-dimensional convection–diffusion equation. Math. Comput. 72(241), 263–288 (2001)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Elman, H.C., Ramage, A.: An analysis of smoothing effects of upwinding strategies for the convection–diffusion equation. SIAM J. Numer. Anal. 40(1), 254–281 (2002)MathSciNetCrossRefMATH Elman, H.C., Ramage, A.: An analysis of smoothing effects of upwinding strategies for the convection–diffusion equation. SIAM J. Numer. Anal. 40(1), 254–281 (2002)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: a matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33(2) Article 14, (2007) Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: a matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33(2) Article 14, (2007)
17.
Zurück zum Zitat Elman, H.C., Schultz, M.H.: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23(1), 44–57 (1986)MathSciNetCrossRefMATH Elman, H.C., Schultz, M.H.: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23(1), 44–57 (1986)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers, with applications in incompressible fluid dynamics. In: Numerical Mathematics and Scientific Computation, 2 edn, vol. 21. Oxford University Press, NY (2014) Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers, with applications in incompressible fluid dynamics. In: Numerical Mathematics and Scientific Computation, 2 edn, vol. 21. Oxford University Press, NY (2014)
19.
Zurück zum Zitat George, A., Liu, J.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs (1981)MATH George, A., Liu, J.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs (1981)MATH
20.
Zurück zum Zitat Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72, 247–265 (2004)MathSciNetCrossRefMATH Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72, 247–265 (2004)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Grasedyck, L., Kressner, D., Tobler, Ch.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetCrossRefMATH Grasedyck, L., Kressner, D., Tobler, Ch.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gunn, J.E.: The numerical solution of \(\nabla \cdot a \nabla u = f\) by a semi-explicit alternating-direction iterative technique. Numer. Math. 6, 181–184 (1964)MathSciNetCrossRefMATH Gunn, J.E.: The numerical solution of \(\nabla \cdot a \nabla u = f\) by a semi-explicit alternating-direction iterative technique. Numer. Math. 6, 181–184 (1964)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Hackbusch, W., Khoromskij, B.N., Tyrtyshnikov, E.E.: Hierarchical Kronecker tensor-product approximations. J. Numer. Math. 13(2), 119–156 (2005)MathSciNetCrossRefMATH Hackbusch, W., Khoromskij, B.N., Tyrtyshnikov, E.E.: Hierarchical Kronecker tensor-product approximations. J. Numer. Math. 13(2), 119–156 (2005)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110, 1–19 (2012)CrossRef Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110, 1–19 (2012)CrossRef
25.
Zurück zum Zitat Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)MathSciNetCrossRefMATH Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Kressner, D., Uschmajew, A.: On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problem (2014). arXiv:1406.7026v1 Kressner, D., Uschmajew, A.: On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problem (2014). arXiv:​1406.​7026v1
28.
29.
Zurück zum Zitat Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436, 3819–3838 (2012)MathSciNetCrossRefMATH Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436, 3819–3838 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Notay, Y.: Users Guide to AGMG, 3rd edn. In: Service de Métrologie Nucléaire Universitè Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium (2010) Notay, Y.: Users Guide to AGMG, 3rd edn. In: Service de Métrologie Nucléaire Universitè Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium (2010)
31.
Zurück zum Zitat Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34(4), A2288–A2316 (2012) Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34(4), A2288–A2316 (2012)
32.
Zurück zum Zitat Palitta, D.: Preconditioning strategies for the numerical solution of convection-diffusion partial differential equations. Master’s thesis, Alma Mater Studiorum - Università di Bologna (2014) Palitta, D.: Preconditioning strategies for the numerical solution of convection-diffusion partial differential equations. Master’s thesis, Alma Mater Studiorum - Università di Bologna (2014)
34.
Zurück zum Zitat Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003) Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)
35.
Zurück zum Zitat Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefMATH Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Shank, S.D., Simoncini, V., Szyld, D.B.: Efficient low-rank solutions of generalized Lyapunov equations. Tech.Rep. 14-11-10, Department of Mathematics, Temple University (2014) Shank, S.D., Simoncini, V., Szyld, D.B.: Efficient low-rank solutions of generalized Lyapunov equations. Tech.Rep. 14-11-10, Department of Mathematics, Temple University (2014)
38.
Zurück zum Zitat Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)MathSciNetCrossRefMATH Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Simoncini, V.: Computational methods for linear matrix equations. Technical report, Alma Mater Studiorum - Università di Bologna (2013) Simoncini, V.: Computational methods for linear matrix equations. Technical report, Alma Mater Studiorum - Università di Bologna (2013)
40.
Zurück zum Zitat Starke, G.: Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 28(5), 1431–1445 (1991)MathSciNetCrossRefMATH Starke, G.: Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 28(5), 1431–1445 (1991)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Stynes, M.: Numerical methods for convection-diffusion problems or the 30 years war. Department of Mathematics, National University of Ireland (2013). arXiv:1306.5172v1 Stynes, M.: Numerical methods for convection-diffusion problems or the 30 years war. Department of Mathematics, National University of Ireland (2013). arXiv:​1306.​5172v1
42.
Zurück zum Zitat Wachspress, E.L.: Iterative Solution of Elliptic Systems. Prentice-Hall Inc., Englewood Cliffs (1966)MATH Wachspress, E.L.: Iterative Solution of Elliptic Systems. Prentice-Hall Inc., Englewood Cliffs (1966)MATH
43.
Zurück zum Zitat Wachspress, E.L.: Extended application of alternating direction implicit iteration model problem theory. J. Soc. Ind. Appl. Math. 11(4), 994–1016 (1963)MathSciNetCrossRefMATH Wachspress, E.L.: Extended application of alternating direction implicit iteration model problem theory. J. Soc. Ind. Appl. Math. 11(4), 994–1016 (1963)MathSciNetCrossRefMATH
Metadaten
Titel
Matrix-equation-based strategies for convection–diffusion equations
verfasst von
Davide Palitta
Valeria Simoncini
Publikationsdatum
01.06.2016
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2016
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-015-0575-8

Weitere Artikel der Ausgabe 2/2016

BIT Numerical Mathematics 2/2016 Zur Ausgabe

Premium Partner