Skip to main content
Erschienen in: Telecommunication Systems 2/2019

16.03.2019

Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm

verfasst von: Mohammed M. Ahmed, Essam H. Houssein, Aboul Ella Hassanien, Ayman Taha, Ehab Hassanien

Erschienen in: Telecommunication Systems | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sink nodes in large-scale wireless sensor networks (LSWSNs) are responsible for receiving and processing the collected data from sensor nodes. Identifying the locations of sink nodes in LSWSNs play a vital role in term of saving energy. Furthermore, sink nodes have extremely extra resources such as large memory, powerful batteries, long-range antenna, etc. This paper proposes a multi-objective whale optimization algorithm (MOWOA) to determine the lowest number of sink nodes that cover the whole network. The major aim of MOWOA is to reduce the energy consumption and prolongs the lifetime of LSWSNs. To achieve these objectives, a fitness function has been formulated to decrease energy consumption and maximize the network’s lifetime. The experimental results revealed that the proposed MOWOA achieved a better efficiency in reducing the total power consumption by 26% compared with four well-known optimization algorithms: multi-objective grasshopper optimization algorithm, multi-objective salp swarm algorithm, multi-objective gray wolf optimization, multi-objective particle swarm optimization over all networks sizes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.CrossRef
2.
Zurück zum Zitat Espinosa-Ramos, J. I., et al. (2012). A new objective function to build seismic networks using differential evolution. In 2012 IEEE congress on evolutionary computation (CEC) (pp. 1–7). IEEE. Espinosa-Ramos, J. I., et al. (2012). A new objective function to build seismic networks using differential evolution. In 2012 IEEE congress on evolutionary computation (CEC) (pp. 1–7). IEEE.
3.
Zurück zum Zitat Chattopadhyay, S., & Vijayalakshmi, G. (2014). Improving the lifetime of wireless sensor network through energy conservation. International Journal of Computer Science and Information Technologies, 5(2), 2345–2347. Chattopadhyay, S., & Vijayalakshmi, G. (2014). Improving the lifetime of wireless sensor network through energy conservation. International Journal of Computer Science and Information Technologies, 5(2), 2345–2347.
4.
Zurück zum Zitat Osamaa, A., El-Said, S. A., & Hassanien, A. E. (2016). Energy-efficient routing techniques for wireless sensors networks. In Handbook of research on emerging technologies for electrical power planning, analysis, and optimization (pp. 37–62). IGI Global. Osamaa, A., El-Said, S. A., & Hassanien, A. E. (2016). Energy-efficient routing techniques for wireless sensors networks. In Handbook of research on emerging technologies for electrical power planning, analysis, and optimization (pp. 37–62). IGI Global.
5.
Zurück zum Zitat Coello, C. A. C. (2009). Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored. Frontiers of Computer Science in China, 3(1), 18–30.CrossRef Coello, C. A. C. (2009). Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored. Frontiers of Computer Science in China, 3(1), 18–30.CrossRef
6.
Zurück zum Zitat Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3–34). Springer. Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3–34). Springer.
7.
Zurück zum Zitat Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156–172.CrossRef Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156–172.CrossRef
8.
Zurück zum Zitat Tharwat, A., Houssein, E. H., Ahmed, M. M., Hassanien, A. E., & Gabel, T. (2017). Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Applied Intelligence, 1–16. Tharwat, A., Houssein, E. H., Ahmed, M. M., Hassanien, A. E., & Gabel, T. (2017). Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Applied Intelligence, 1–16.
9.
Zurück zum Zitat Pradhan, P. M., & Panda, G. (2012). Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Networks, 10(6), 1134–1145.CrossRef Pradhan, P. M., & Panda, G. (2012). Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Networks, 10(6), 1134–1145.CrossRef
10.
Zurück zum Zitat Oyman, E. I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. In 2004 IEEE international conference on communications (Vol. 6, pp. 3663–3667). IEEE. Oyman, E. I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. In 2004 IEEE international conference on communications (Vol. 6, pp. 3663–3667). IEEE.
11.
Zurück zum Zitat Kim, H., Seok, Y., Choi, N., Choi, Y., & Kwon, T. (2005). Optimal multi-sink positioning and energy-efficient routing in wireless sensor networks. In International conference on information networking (pp. 264–274). Springer. Kim, H., Seok, Y., Choi, N., Choi, Y., & Kwon, T. (2005). Optimal multi-sink positioning and energy-efficient routing in wireless sensor networks. In International conference on information networking (pp. 264–274). Springer.
12.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), 660–670.CrossRef
13.
Zurück zum Zitat Ahmed, M. M., Taha, A., Hassanien, A. E., & Hassanien, E. (2018). An optimized k-nearest neighbor algorithm for extending wireless sensor network lifetime. In International conference on advanced machine learning technologies and applications (pp. 506–515). Springer. Ahmed, M. M., Taha, A., Hassanien, A. E., & Hassanien, E. (2018). An optimized k-nearest neighbor algorithm for extending wireless sensor network lifetime. In International conference on advanced machine learning technologies and applications (pp. 506–515). Springer.
14.
Zurück zum Zitat Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126.CrossRef Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126.CrossRef
15.
Zurück zum Zitat Armano, G., & Farmani, M. R. (2016). Multiobjective clustering analysis using particle swarm optimization. Expert Systems with Applications, 55, 184–193.CrossRef Armano, G., & Farmani, M. R. (2016). Multiobjective clustering analysis using particle swarm optimization. Expert Systems with Applications, 55, 184–193.CrossRef
16.
Zurück zum Zitat Snasel, V., Kong, L., Tsai, P., & Pan, J.-S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60. Snasel, V., Kong, L., Tsai, P., & Pan, J.-S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60.
17.
Zurück zum Zitat Ahmed, M. M., Houssein, E. H., Hassanien, A. E., Taha, A., & Hassanien, E. (2017). Maximizing lifetime of wireless sensor networks based on whale optimization algorithm. In International conference on advanced intelligent systems and informatics (pp. 724–733). Springer. Ahmed, M. M., Houssein, E. H., Hassanien, A. E., Taha, A., & Hassanien, E. (2017). Maximizing lifetime of wireless sensor networks based on whale optimization algorithm. In International conference on advanced intelligent systems and informatics (pp. 724–733). Springer.
18.
Zurück zum Zitat Fouad, M. M., Snasel, V., & Hassanien, A. E. (2015). Energy-aware sink node localization algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 11(7), 810356.CrossRef Fouad, M. M., Snasel, V., & Hassanien, A. E. (2015). Energy-aware sink node localization algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 11(7), 810356.CrossRef
19.
Zurück zum Zitat Saravanan, M., & Madheswaran, M. (2014). A hybrid optimized weighted minimum spanning tree for the shortest intrapath selection in wireless sensor network. Mathematical Problems in Engineering. Saravanan, M., & Madheswaran, M. (2014). A hybrid optimized weighted minimum spanning tree for the shortest intrapath selection in wireless sensor network. Mathematical Problems in Engineering.
20.
Zurück zum Zitat Rani, K. S. S., & Devarajan, N. (2012). Optimization model for sensor node deployment. European Journal of Scientific Research, 70(4), 491–498. Rani, K. S. S., & Devarajan, N. (2012). Optimization model for sensor node deployment. European Journal of Scientific Research, 70(4), 491–498.
21.
Zurück zum Zitat Jena, R. (2014). Artificial bee colony algorithm based multi-objective node placement for wireless sensor network. International Journal of Information Technology and Computer Science (IJITCS), 6(6), 25.CrossRef Jena, R. (2014). Artificial bee colony algorithm based multi-objective node placement for wireless sensor network. International Journal of Information Technology and Computer Science (IJITCS), 6(6), 25.CrossRef
22.
Zurück zum Zitat Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In Proceedings of the IFIP networking workshop on performance control in wireless sensor networks (PWSN 2006), Coimbra, Portugal (pp. 30–37). Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In Proceedings of the IFIP networking workshop on performance control in wireless sensor networks (PWSN 2006), Coimbra, Portugal (pp. 30–37).
23.
Zurück zum Zitat Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2017). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Communications Surveys & Tutorials, 19(1), 550–586.CrossRef Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2017). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Communications Surveys & Tutorials, 19(1), 550–586.CrossRef
24.
Zurück zum Zitat Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). S-shaped binary whale optimization algorithm for feature selection. In Recent trends in signal and image processing (pp. 79–87). Springer. Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). S-shaped binary whale optimization algorithm for feature selection. In Recent trends in signal and image processing (pp. 79–87). Springer.
25.
Zurück zum Zitat Blagojevic, M., Geilen, M., Basten, T., & Hendriks, T. (2012). Fast sink placement for gossip-based wireless sensor networks. In 2012 IEEE 31st international on performance computing and communications conference (IPCCC) (pp. 110–119). IEEE. Blagojevic, M., Geilen, M., Basten, T., & Hendriks, T. (2012). Fast sink placement for gossip-based wireless sensor networks. In 2012 IEEE 31st international on performance computing and communications conference (IPCCC) (pp. 110–119). IEEE.
26.
Zurück zum Zitat Abidin, H. Z., Din, N. M., & Jalil, Y. E. (2013). Multi-objective optimization (MOO) approach for sensor node placement in WSN. In 2013 7th International conference on signal processing and communication systems (ICSPCS) (pp. 1–5). IEEE. Abidin, H. Z., Din, N. M., & Jalil, Y. E. (2013). Multi-objective optimization (MOO) approach for sensor node placement in WSN. In 2013 7th International conference on signal processing and communication systems (ICSPCS) (pp. 1–5). IEEE.
27.
Zurück zum Zitat Chen, F., & Li, R. (2013). Sink node placement strategies for wireless sensor networks. Wireless Personal Communications, 68(2), 303–319.CrossRef Chen, F., & Li, R. (2013). Sink node placement strategies for wireless sensor networks. Wireless Personal Communications, 68(2), 303–319.CrossRef
28.
Zurück zum Zitat Hacioglu, G., Kand, V. F. A., & Sesli, E. (2016). Multi objective clustering for wireless sensor networks. Expert Systems with Applications, 59, 86–100.CrossRef Hacioglu, G., Kand, V. F. A., & Sesli, E. (2016). Multi objective clustering for wireless sensor networks. Expert Systems with Applications, 59, 86–100.CrossRef
29.
Zurück zum Zitat Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. In Metaheuristics for multiobjective optimisation (pp. 3–37). Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. In Metaheuristics for multiobjective optimisation (pp. 3–37).
30.
Zurück zum Zitat Binh, H. T. T., Hanh, N. T., Dey, N., et al. (2018). Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Computing and Applications, 30(7), 2305–2317.CrossRef Binh, H. T. T., Hanh, N. T., Dey, N., et al. (2018). Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Computing and Applications, 30(7), 2305–2317.CrossRef
31.
Zurück zum Zitat Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation, 30, 1–10.CrossRef Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation, 30, 1–10.CrossRef
32.
Zurück zum Zitat Marks, M. (2010). A survey of multi-objective deployment in wireless sensor networks. Journal of Telecommunications and Information Technology, 3, 36–41. Marks, M. (2010). A survey of multi-objective deployment in wireless sensor networks. Journal of Telecommunications and Information Technology, 3, 36–41.
33.
Zurück zum Zitat Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications and solution approaches. Computer Networks, 99, 134–161.CrossRef Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications and solution approaches. Computer Networks, 99, 134–161.CrossRef
34.
Zurück zum Zitat Abidin, H. Z., Din, N. M., & Radzi, N. A. M. (2013). Deterministic static sensor node placement in wireless sensor network based on territorial predator scent marking behaviour. International Journal of Communication Networks and Information Security (IJCNIS), 5(3), 186–192. Abidin, H. Z., Din, N. M., & Radzi, N. A. M. (2013). Deterministic static sensor node placement in wireless sensor network based on territorial predator scent marking behaviour. International Journal of Communication Networks and Information Security (IJCNIS), 5(3), 186–192.
35.
Zurück zum Zitat Zainol Abidin, H., & Din, N. M. (2013). Sensor node placement in wireless sensor network based on territorial predator scent marking algorithm. ISRN Sensor Networks. Zainol Abidin, H., & Din, N. M. (2013). Sensor node placement in wireless sensor network based on territorial predator scent marking algorithm. ISRN Sensor Networks.
36.
Zurück zum Zitat Shareef, A. Q., & Mijwel, M. M. (2014). Improved accuracy distribution localization in wireless sensor networks. International Journal of Computer Science and Mobile Computing, 3(6), 286–296. Shareef, A. Q., & Mijwel, M. M. (2014). Improved accuracy distribution localization in wireless sensor networks. International Journal of Computer Science and Mobile Computing, 3(6), 286–296.
37.
Zurück zum Zitat Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.CrossRef Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.CrossRef
38.
Zurück zum Zitat Konstantinidis, A., & Yang, K. (2011). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 11(6), 4117–4134.CrossRef Konstantinidis, A., & Yang, K. (2011). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 11(6), 4117–4134.CrossRef
39.
Zurück zum Zitat Coello, C. A. (2000). An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys (CSUR), 32(2), 109–143.CrossRef Coello, C. A. (2000). An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys (CSUR), 32(2), 109–143.CrossRef
40.
Zurück zum Zitat Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Technical report, TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio. Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Technical report, TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.
41.
Zurück zum Zitat Sierra, M. R., & Coello, C. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In Evolutionary multi-criterion optimization (Vol. 3410, pp. 505–519). Springer. Sierra, M. R., & Coello, C. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In Evolutionary multi-criterion optimization (Vol. 3410, pp. 505–519). Springer.
42.
Zurück zum Zitat Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
43.
Zurück zum Zitat Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2017). Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 1–16. Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2017). Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 1–16.
44.
Zurück zum Zitat Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef
45.
Zurück zum Zitat Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. d S. (2016). Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106–119.CrossRef Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. d S. (2016). Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106–119.CrossRef
46.
Zurück zum Zitat Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308. Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308.
47.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197.CrossRef
48.
Zurück zum Zitat Wightman, P. M., & Labrador, M. A. (2011). A3Cov: A new topology construction protocol for connected area coverage in WSN. In 2011 IEEE on wireless communications and networking conference (WCNC) (pp. 522–527). IEEE. Wightman, P. M., & Labrador, M. A. (2011). A3Cov: A new topology construction protocol for connected area coverage in WSN. In 2011 IEEE on wireless communications and networking conference (WCNC) (pp. 522–527). IEEE.
49.
Zurück zum Zitat Banka, H., & Jana, P. K., et al. (2016). PSO-based multiple-sink placement algorithm for protracting the lifetime of wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 605–616). Springer. Banka, H., & Jana, P. K., et al. (2016). PSO-based multiple-sink placement algorithm for protracting the lifetime of wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 605–616). Springer.
50.
Zurück zum Zitat Dandekar, D. R., & Deshmukh, P. (2013). Energy balancing multiple sink optimal deployment in multi-hop wireless sensor networks. In 2013 IEEE 3rd international on advance computing conference (IACC) (pp. 408–412). IEEE. Dandekar, D. R., & Deshmukh, P. (2013). Energy balancing multiple sink optimal deployment in multi-hop wireless sensor networks. In 2013 IEEE 3rd international on advance computing conference (IACC) (pp. 408–412). IEEE.
51.
Zurück zum Zitat Kaur, N., Bedi, R. K., & Gangwar, R. (2016). A new sink placement strategy for WSNs. In International Conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE. Kaur, N., Bedi, R. K., & Gangwar, R. (2016). A new sink placement strategy for WSNs. In International Conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE.
Metadaten
Titel
Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm
verfasst von
Mohammed M. Ahmed
Essam H. Houssein
Aboul Ella Hassanien
Ayman Taha
Ehab Hassanien
Publikationsdatum
16.03.2019
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2019
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-019-00559-7

Weitere Artikel der Ausgabe 2/2019

Telecommunication Systems 2/2019 Zur Ausgabe

Neuer Inhalt