Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2017

27.09.2016 | RESEARCH PAPER

Maximum probable life time analysis under the required time-dependent failure probability constraint and its meta-model estimation

verfasst von: Wanying Yun, Zhenzhou Lu, Xian Jiang, Lu Feng Zhao

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-dependent reliability (failure probability) aims at measuring the probability of the normal (abnormal) operation for structure/mechanism within the given time interval. To analyze the maximum probable life time under a required time-dependent failure probability (TDFP) constraint, an inverse process corresponding to the time-dependent reliability is proposed by taking the randomness of the input variables into consideration. The proposed inverse process employs the monotonicity between the TDFP and the upper boundary of the given time interval which reflects the life time, and an adaptive single-loop sampling meta-model for the time-dependent limit state function is presented to estimate the TDFP at the given time interval flexibly. Since the TDFP is generally monotonic to the upper boundary of the given time interval, thus by adjusting the probable upper and lower boundaries of the time interval in which the corresponding TDFPs include the required TDFP constraint, the proposed approach can always search the maximum probable life time at the required TDFP by the dichotomy. By introducing the time variable as an input which is the same level as the input random variables and constructing the adaptive single-loop sampling meta-model for the time-dependent limit state function in a longer time interval with the TDFP bigger than the required TDFP, the TDFP in any subintervals of the time interval involved in the constructed meta-model can be estimated as a byproduct of the constructed meta-model without any additional actual limit state evaluations. Then the efficiency for analyzing the maximum probable life time is improved by the dichotomy and the unified meta-model of the time-dependent limit state function. Two examples are employed to illustrate the accuracy and the efficiency of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84(1):75–86CrossRef Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84(1):75–86CrossRef
Zurück zum Zitat Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277CrossRef Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277CrossRef
Zurück zum Zitat Bisadi V, Padgett JE (2015) Explicit time-dependent multi-hazard cost analysis based on parameterized demand models for the optimum design of bridge structures. J Comput Aided Civ Infrastruct Eng 30:541–554CrossRef Bisadi V, Padgett JE (2015) Explicit time-dependent multi-hazard cost analysis based on parameterized demand models for the optimum design of bridge structures. J Comput Aided Civ Infrastruct Eng 30:541–554CrossRef
Zurück zum Zitat Breitung K (1988) Asymptotic crossing rates for stationary Gaussian vector processes. Stoch Process Their Appl 29(2):195–207MathSciNetCrossRefMATH Breitung K (1988) Asymptotic crossing rates for stationary Gaussian vector processes. Stoch Process Their Appl 29(2):195–207MathSciNetCrossRefMATH
Zurück zum Zitat Breitung K, Rackwitz R (1998) Outcrossing rates of marked Poisson cluster processes in structural reliability. Appl Math Model 12(5):482–490MATH Breitung K, Rackwitz R (1998) Outcrossing rates of marked Poisson cluster processes in structural reliability. Appl Math Model 12(5):482–490MATH
Zurück zum Zitat Chen JB, Li J (2007) The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters. Struct Saf 29:77–93CrossRef Chen JB, Li J (2007) The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters. Struct Saf 29:77–93CrossRef
Zurück zum Zitat Du XP (2014) Time-dependent mechanism reliability analysis with envelope functions and first-order approximation. ASME J Mech Des 136(8):081010CrossRef Du XP (2014) Time-dependent mechanism reliability analysis with envelope functions and first-order approximation. ASME J Mech Des 136(8):081010CrossRef
Zurück zum Zitat Du XP, Sudjianto A (2004) The first order saddle point approximation for reliability analysis. AIAA J 42(6):1199–1207CrossRef Du XP, Sudjianto A (2004) The first order saddle point approximation for reliability analysis. AIAA J 42(6):1199–1207CrossRef
Zurück zum Zitat Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and monte Carlo simulation. Struct Saf 32(2):145–154CrossRef Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and monte Carlo simulation. Struct Saf 32(2):145–154CrossRef
Zurück zum Zitat Hu Z, Du XP (2012) Reliability analysis for hydrokinetic turbine blades. Renew Energy 48(1):251–262CrossRef Hu Z, Du XP (2012) Reliability analysis for hydrokinetic turbine blades. Renew Energy 48(1):251–262CrossRef
Zurück zum Zitat Hu Z, Du XP (2013) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip Optim 48:893–907MathSciNetCrossRef Hu Z, Du XP (2013) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip Optim 48:893–907MathSciNetCrossRef
Zurück zum Zitat Hu Z, Du X (2015) First order reliability method for time-variant problems using series expansions. Struct Multidiscip Optim 51(1):1–21MathSciNetCrossRef Hu Z, Du X (2015) First order reliability method for time-variant problems using series expansions. Struct Multidiscip Optim 51(1):1–21MathSciNetCrossRef
Zurück zum Zitat Hu Z, Mahadevan S (2016) A single-loop kriging surrogate modelling for time-dependent reliability analysis. J Mech Des ASME 138(6):061406CrossRef Hu Z, Mahadevan S (2016) A single-loop kriging surrogate modelling for time-dependent reliability analysis. J Mech Des ASME 138(6):061406CrossRef
Zurück zum Zitat Hu Z, Li HF, Du XP (2013) Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades. Struct Multidiscip Optim 47:765–781CrossRef Hu Z, Li HF, Du XP (2013) Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades. Struct Multidiscip Optim 47:765–781CrossRef
Zurück zum Zitat Kaymaz I (2005) Application of kriging methods to structural reliability problems. Struct Saf 27(2):133–151CrossRef Kaymaz I (2005) Application of kriging methods to structural reliability problems. Struct Saf 27(2):133–151CrossRef
Zurück zum Zitat Koehler JK, Owen AB (1996) Computer experiments, in: handbook of statistics. Elsevier Science, New York, pp 261–308MATH Koehler JK, Owen AB (1996) Computer experiments, in: handbook of statistics. Elsevier Science, New York, pp 261–308MATH
Zurück zum Zitat Krzykacz-Hausmann B (2006) An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties. Reliab Eng Syst Saf 91(10–11):1210–1218CrossRef Krzykacz-Hausmann B (2006) An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties. Reliab Eng Syst Saf 91(10–11):1210–1218CrossRef
Zurück zum Zitat Li J, Chen JB, Fan WL (2007) The equivalent extreme-value event and evaluation of the structural system reliability. Struct Saf 29:112–131CrossRef Li J, Chen JB, Fan WL (2007) The equivalent extreme-value event and evaluation of the structural system reliability. Struct Saf 29:112–131CrossRef
Zurück zum Zitat Lutes, LD, Sarkani S. (2009) Reliability analysis of system subject to first-passage failure. NASA Technical Report 2009; No. NASA/CR-2009-215782 Lutes, LD, Sarkani S. (2009) Reliability analysis of system subject to first-passage failure. NASA Technical Report 2009; No. NASA/CR-2009-215782
Zurück zum Zitat Singh A, Mourelatos ZP (2010) On the time-dependent reliability of non-monotonic, non-repairable systems. SAE Paper No.2010-01-0696. Singh A, Mourelatos ZP (2010) On the time-dependent reliability of non-monotonic, non-repairable systems. SAE Paper No.2010-01-0696.
Zurück zum Zitat Singh A, Mourelatos ZP, Li J (2010) Design for lifecycle cost using time-dependent reliability. J Mech Des ASME 132(9):091008CrossRef Singh A, Mourelatos ZP, Li J (2010) Design for lifecycle cost using time-dependent reliability. J Mech Des ASME 132(9):091008CrossRef
Zurück zum Zitat Singh A, Mourelatos Z, Nikolaiclis E (2011) Time-dependent reliability of random dynamic system using time-series modeling and importance sampling. SAE Technique paper Singh A, Mourelatos Z, Nikolaiclis E (2011) Time-dependent reliability of random dynamic system using time-series modeling and importance sampling. SAE Technique paper
Zurück zum Zitat Sobol IM (1976) Uniformly distributed sequences with additional uniformity properties. USSR Comput Math Math Phys 16:236–242CrossRefMATH Sobol IM (1976) Uniformly distributed sequences with additional uniformity properties. USSR Comput Math Math Phys 16:236–242CrossRefMATH
Zurück zum Zitat Sundar VS, Manhar CS (2013) Time variant reliability model updating in instrumental dynamical systems based on Girsanov's transformation. Int J Non Linear Mech 52:32–40CrossRef Sundar VS, Manhar CS (2013) Time variant reliability model updating in instrumental dynamical systems based on Girsanov's transformation. Int J Non Linear Mech 52:32–40CrossRef
Zurück zum Zitat Wang ZQ, Wang PF (2012) A nested extreme response surface approach for time-dependent reliability-based design optimization. J Mech Des ASME 134:121007CrossRef Wang ZQ, Wang PF (2012) A nested extreme response surface approach for time-dependent reliability-based design optimization. J Mech Des ASME 134:121007CrossRef
Zurück zum Zitat Wang ZQ, Wang PF (2014) A maximum confidence enhancement based sequential sampling scheme for simulation-based design. J Mech Des ASME 136(2):021006CrossRef Wang ZQ, Wang PF (2014) A maximum confidence enhancement based sequential sampling scheme for simulation-based design. J Mech Des ASME 136(2):021006CrossRef
Zurück zum Zitat Wang ZQ, Wang PF (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef Wang ZQ, Wang PF (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef
Zurück zum Zitat Welch WJ, Buck RJ, Sacks J (1992) Predicting and computer experiments. Technometrics 34(1):15–25CrossRef Welch WJ, Buck RJ, Sacks J (1992) Predicting and computer experiments. Technometrics 34(1):15–25CrossRef
Zurück zum Zitat Xu J (2016) A new method for reliability assessment of structural dynamic systems with random parameters. Struct Saf 60:130–143CrossRef Xu J (2016) A new method for reliability assessment of structural dynamic systems with random parameters. Struct Saf 60:130–143CrossRef
Zurück zum Zitat Zhang XF, Pandey MD, Zhang YM (2014) Computationally efficient reliability analysis of mechanisms based on a multiplicative dimensional reduction method. J Mech Des ASME 136(6):061006CrossRef Zhang XF, Pandey MD, Zhang YM (2014) Computationally efficient reliability analysis of mechanisms based on a multiplicative dimensional reduction method. J Mech Des ASME 136(6):061006CrossRef
Zurück zum Zitat Zhao YG, Ono T (2001) Moment method for structural reliability. Struct Saf 23(1):47–75CrossRef Zhao YG, Ono T (2001) Moment method for structural reliability. Struct Saf 23(1):47–75CrossRef
Zurück zum Zitat Zhou CC, Lu ZZ, Zhang F, Yue ZF (2015) An adaptive reliability method combining relevance vector machine and importance sampling. Struct Multidiscip Optim 52:945–957MathSciNetCrossRef Zhou CC, Lu ZZ, Zhang F, Yue ZF (2015) An adaptive reliability method combining relevance vector machine and importance sampling. Struct Multidiscip Optim 52:945–957MathSciNetCrossRef
Metadaten
Titel
Maximum probable life time analysis under the required time-dependent failure probability constraint and its meta-model estimation
verfasst von
Wanying Yun
Zhenzhou Lu
Xian Jiang
Lu Feng Zhao
Publikationsdatum
27.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2017
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1594-z

Weitere Artikel der Ausgabe 4/2017

Structural and Multidisciplinary Optimization 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.