Skip to main content

28.01.2024 | Optimization

Mean–standard-deviation-based electric vehicle routing problem with time windows using Lagrangian relaxation and extended alternating direction method of multipliers-based decomposition algorithm

verfasst von: Jieman Xia, Zhou He, Shuolei Wang, Siliang Liu, Shuai Zhang

Erschienen in: Soft Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In response to the challenges of global warming to sustainable development, electric vehicles (EVs) have become an important part of the supply chain. Numerous studies have focused on the electric vehicle routing problem with time windows (EVRPTW) to design an optimal routing plan for EVs and meet customers’ demands within th e specified time windows. However, most studies have been conducted in deterministic situations and neglected the uncertain travel time in reality. Therefore, this study proposes a novel mean–standard-deviation-based EVRPTW model and describes uncertain travel time with the expected travel time, travel time variance, and reliable parameters. Besides, the proposed model considers the partial recharge policy and capacitated recharge stations in an uncertain environment, and proposes a time-discrete state-space-time-energy representation network to better simulate real-world situations. To effectively solve the proposed model, a new Lagrangian relaxation and extended alternating direction method of multipliers (LR–EADMM)-based decomposition algorithm is proposed. In the LR–EADMM, dynamic penalty parameters and subgradient method are employed to update the Lagrangian multipliers, strengthen the algorithmic convergence, and improve the quality of solutions. Furthermore, to validate the performance of the proposed algorithm, several comparison experiments are conducted with the Gurobi optimizer and two baseline algorithms. With reliable parameter 0, the experimental results show that the average upper bounds obtained by LR–EADMM is 0.78% greater than the best-known solutions. With reliable parameters 1 and 2, the average gap between lower and upper bounds obtained by LR–EADMM is 8.08% smaller than that obtained by baseline algorithm in solving small instances, and the average upper bounds obtained by LR–EADMM is, respectively, 3.01% and 5.71% better than those obtained by two baseline algorithms in solving large instances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adulyasak Y, Jaillet P (2016) Models and algorithms for stochastic and robust vehicle routing with deadlines. Transp Sci 50(2):608–626CrossRef Adulyasak Y, Jaillet P (2016) Models and algorithms for stochastic and robust vehicle routing with deadlines. Transp Sci 50(2):608–626CrossRef
Zurück zum Zitat Aliakbari A, Rashidi Komijan A, Tavakkoli-Moghaddam R, Najafi E (2022) A new robust optimization model for relief logistics planning under uncertainty: a real-case study. Soft Comput 26(8):3883–3901CrossRef Aliakbari A, Rashidi Komijan A, Tavakkoli-Moghaddam R, Najafi E (2022) A new robust optimization model for relief logistics planning under uncertainty: a real-case study. Soft Comput 26(8):3883–3901CrossRef
Zurück zum Zitat Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRef Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRef
Zurück zum Zitat Cortés-Murcia DL, Prodhon C, Afsar HM (2019) The electric vehicle routing problem with time windows, partial recharges and satellite customers. Transp Res Part E Logist Transp Rev 130:184–206CrossRef Cortés-Murcia DL, Prodhon C, Afsar HM (2019) The electric vehicle routing problem with time windows, partial recharges and satellite customers. Transp Res Part E Logist Transp Rev 130:184–206CrossRef
Zurück zum Zitat Desaulniers G, Errico F, Irnich S, Schneider M (2016) Exact algorithms for electric vehicle-routing problems with time windows. Oper Res 64(6):1388–1405MathSciNetCrossRef Desaulniers G, Errico F, Irnich S, Schneider M (2016) Exact algorithms for electric vehicle-routing problems with time windows. Oper Res 64(6):1388–1405MathSciNetCrossRef
Zurück zum Zitat Duman EN, Taş D, Çatay B (2021) Branch-and-price-and-cut methods for the electric vehicle routing problem with time windows. Int J Prod Res 60(17):5332–5353CrossRef Duman EN, Taş D, Çatay B (2021) Branch-and-price-and-cut methods for the electric vehicle routing problem with time windows. Int J Prod Res 60(17):5332–5353CrossRef
Zurück zum Zitat Erdelić T, Carić T (2022) Goods delivery with electric vehicles: electric vehicle routing optimization with time windows and partial or full recharge. Energies 15(1):285CrossRef Erdelić T, Carić T (2022) Goods delivery with electric vehicles: electric vehicle routing optimization with time windows and partial or full recharge. Energies 15(1):285CrossRef
Zurück zum Zitat Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114CrossRef Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114CrossRef
Zurück zum Zitat Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92MathSciNetCrossRef Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92MathSciNetCrossRef
Zurück zum Zitat Froger A, Jabali O, Mendoza JE, Laporte G (2022) The electric vehicle routing problem with capacitated charging stations. Transp Sci 56(2):460–482CrossRef Froger A, Jabali O, Mendoza JE, Laporte G (2022) The electric vehicle routing problem with capacitated charging stations. Transp Sci 56(2):460–482CrossRef
Zurück zum Zitat Gabrel V, Mahjoub AR, Taktak R, Uchoa E (2020) The multiple Steiner TSP with order constraints: complexity and optimization algorithms. Soft Comput 24(23):17957–17968CrossRef Gabrel V, Mahjoub AR, Taktak R, Uchoa E (2020) The multiple Steiner TSP with order constraints: complexity and optimization algorithms. Soft Comput 24(23):17957–17968CrossRef
Zurück zum Zitat Glowinski R, Marroco A (1975) Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Anal Numér 9(2):41–76MathSciNet Glowinski R, Marroco A (1975) Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Anal Numér 9(2):41–76MathSciNet
Zurück zum Zitat Keskin M, Çatay B (2016) Partial recharge strategies for the electric vehicle routing problem with time windows. Transp Res Part c: Emerg Technol 65:111–127CrossRef Keskin M, Çatay B (2016) Partial recharge strategies for the electric vehicle routing problem with time windows. Transp Res Part c: Emerg Technol 65:111–127CrossRef
Zurück zum Zitat Keskin M, Çatay B (2018) A matheuristic method for the electric vehicle routing problem with time windows and fast chargers. Comput Oper Res 100:172–188MathSciNetCrossRef Keskin M, Çatay B (2018) A matheuristic method for the electric vehicle routing problem with time windows and fast chargers. Comput Oper Res 100:172–188MathSciNetCrossRef
Zurück zum Zitat Keskin M, Laporte G, Çatay B (2019) Electric vehicle routing problem with time-dependent waiting times at recharging stations. Comput Oper Res 107:77–94MathSciNetCrossRef Keskin M, Laporte G, Çatay B (2019) Electric vehicle routing problem with time-dependent waiting times at recharging stations. Comput Oper Res 107:77–94MathSciNetCrossRef
Zurück zum Zitat Kim J, Park H, Jeong B (2022) Robust optimization model for the electric vehicle routing problem under battery energy consumption uncertainty with arc segmentation. Int J Sustain Transp 17(5):434–445CrossRef Kim J, Park H, Jeong B (2022) Robust optimization model for the electric vehicle routing problem under battery energy consumption uncertainty with arc segmentation. Int J Sustain Transp 17(5):434–445CrossRef
Zurück zum Zitat Lam E, Desaulniers G, Stuckey PJ (2022) Branch-and-cut-and-price for the electric vehicle routing problem with time windows, piecewise-linear recharging and capacitated recharging stations. Comput Oper Res 145:105870MathSciNetCrossRef Lam E, Desaulniers G, Stuckey PJ (2022) Branch-and-cut-and-price for the electric vehicle routing problem with time windows, piecewise-linear recharging and capacitated recharging stations. Comput Oper Res 145:105870MathSciNetCrossRef
Zurück zum Zitat Lin B, Ghaddar B, Nathwani J (2021) Deep reinforcement learning for the electric vehicle routing problem with time windows. IEEE Trans Intell Transp Syst 23(8):11528–11538CrossRef Lin B, Ghaddar B, Nathwani J (2021) Deep reinforcement learning for the electric vehicle routing problem with time windows. IEEE Trans Intell Transp Syst 23(8):11528–11538CrossRef
Zurück zum Zitat Liu CS, Kou G, Zhou XC, Peng Y, Sheng HY, Alsaadi FE (2020) Time-dependent vehicle routing problem with time windows of city logistics with a congestion avoidance approach. Knowl-Based Syst 188:104813CrossRef Liu CS, Kou G, Zhou XC, Peng Y, Sheng HY, Alsaadi FE (2020) Time-dependent vehicle routing problem with time windows of city logistics with a congestion avoidance approach. Knowl-Based Syst 188:104813CrossRef
Zurück zum Zitat Ma BS, Hu DW, Wang Y, Sun Q, He LW, Chen XQ (2023) Time-dependent vehicle routing problem with departure time and speed optimization for shared autonomous electric vehicle service. Appl Math Model 113:333–357CrossRef Ma BS, Hu DW, Wang Y, Sun Q, He LW, Chen XQ (2023) Time-dependent vehicle routing problem with departure time and speed optimization for shared autonomous electric vehicle service. Appl Math Model 113:333–357CrossRef
Zurück zum Zitat Mahmoudi M, Zhou XS (2016) Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: a dynamic programming approach based on state–space–time network representations. Transp Res Part b: Methodol 89:19–42CrossRef Mahmoudi M, Zhou XS (2016) Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: a dynamic programming approach based on state–space–time network representations. Transp Res Part b: Methodol 89:19–42CrossRef
Zurück zum Zitat Pelletier S, Jabali O, Laporte G (2019) The electric vehicle routing problem with energy consumption uncertainty. Transp Res Part b: Methodol 126:225–255CrossRef Pelletier S, Jabali O, Laporte G (2019) The electric vehicle routing problem with energy consumption uncertainty. Transp Res Part b: Methodol 126:225–255CrossRef
Zurück zum Zitat Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transp Sci 48(4):500–520CrossRef Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transp Sci 48(4):500–520CrossRef
Zurück zum Zitat Song MC, Cheng L (2022) An augmented Lagrangian relaxation method for the mean-standard deviation based vehicle routing problem. Knowl-Based Syst 247:108736CrossRef Song MC, Cheng L (2022) An augmented Lagrangian relaxation method for the mean-standard deviation based vehicle routing problem. Knowl-Based Syst 247:108736CrossRef
Zurück zum Zitat Wang ZS, Ding HW, Wang J, Hou P, Li AS, Yang ZJ, Hu X (2022a) Adaptive guided salp swarm algorithm with velocity clamping mechanism for solving optimization problems. J Comput Des Eng 9(6):2196–2234 Wang ZS, Ding HW, Wang J, Hou P, Li AS, Yang ZJ, Hu X (2022a) Adaptive guided salp swarm algorithm with velocity clamping mechanism for solving optimization problems. J Comput Des Eng 9(6):2196–2234
Zurück zum Zitat Wang ZS, Ding HW, Yang JJ, Wang J, Li B, Yang ZJ, Hou P (2022b) Advanced orthogonal opposition-based learning-driven dynamic salp swarm algorithm: framework and case studies. IET Control Theory Appl 16(10):945–971CrossRef Wang ZS, Ding HW, Yang JJ, Wang J, Li B, Yang ZJ, Hou P (2022b) Advanced orthogonal opposition-based learning-driven dynamic salp swarm algorithm: framework and case studies. IET Control Theory Appl 16(10):945–971CrossRef
Zurück zum Zitat Wang ZS, Ding HW, Yang ZJ, Li B, Guan Z, Bao LY (2022c) Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization. Appl Intell 25:7922–7964CrossRef Wang ZS, Ding HW, Yang ZJ, Li B, Guan Z, Bao LY (2022c) Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization. Appl Intell 25:7922–7964CrossRef
Zurück zum Zitat Xiao H, Yan YM, Kou G, Wu SM (2021) Optimal inspection policy for a single-unit system considering two failure modes and production wait time. IEEE Trans Reliab 72(1):395–407CrossRef Xiao H, Yan YM, Kou G, Wu SM (2021) Optimal inspection policy for a single-unit system considering two failure modes and production wait time. IEEE Trans Reliab 72(1):395–407CrossRef
Zurück zum Zitat Xing T, Zhou XS (2011) Finding the most reliable path with and without link travel time correlation: a Lagrangian substitution based approach. Transp Res Part b: Methodol 45(10):1660–1679CrossRef Xing T, Zhou XS (2011) Finding the most reliable path with and without link travel time correlation: a Lagrangian substitution based approach. Transp Res Part b: Methodol 45(10):1660–1679CrossRef
Zurück zum Zitat Yang SY, Ning LJ, Tong LC, Shang P (2021) Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network. Expert Syst Appl 176:114804CrossRef Yang SY, Ning LJ, Tong LC, Shang P (2021) Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network. Expert Syst Appl 176:114804CrossRef
Zurück zum Zitat Yao Y, Zhu XN, Dong HY, Wu SN, Wu HL, Tong LC, Zhou XS (2019) ADMM-based problem decomposition scheme for vehicle routing problem with time windows. Transp Res Part b: Methodol 129:156–174CrossRef Yao Y, Zhu XN, Dong HY, Wu SN, Wu HL, Tong LC, Zhou XS (2019) ADMM-based problem decomposition scheme for vehicle routing problem with time windows. Transp Res Part b: Methodol 129:156–174CrossRef
Zurück zum Zitat Yousefi-Babadi A, Bozorgi-Amiri A, Tavakkoli-Moghaddam R (2022) Redesigning a supply chain network with system disruption using Lagrangian relaxation: a real case study. Soft Comput 26(19):10275–10299CrossRef Yousefi-Babadi A, Bozorgi-Amiri A, Tavakkoli-Moghaddam R (2022) Redesigning a supply chain network with system disruption using Lagrangian relaxation: a real case study. Soft Comput 26(19):10275–10299CrossRef
Zurück zum Zitat Zhang S, Chen MZ, Zhang WY, Zhuang XY (2020) Fuzzy optimization model for electric vehicle routing problem with time windows and recharging stations. Expert Syst Appl 145:113123CrossRef Zhang S, Chen MZ, Zhang WY, Zhuang XY (2020) Fuzzy optimization model for electric vehicle routing problem with time windows and recharging stations. Expert Syst Appl 145:113123CrossRef
Zurück zum Zitat Zhou BH, Zhao Z (2022) Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows. Neural Comput Appl 34:7325–7348CrossRef Zhou BH, Zhao Z (2022) Multi-objective optimization of electric vehicle routing problem with battery swap and mixed time windows. Neural Comput Appl 34:7325–7348CrossRef
Metadaten
Titel
Mean–standard-deviation-based electric vehicle routing problem with time windows using Lagrangian relaxation and extended alternating direction method of multipliers-based decomposition algorithm
verfasst von
Jieman Xia
Zhou He
Shuolei Wang
Siliang Liu
Shuai Zhang
Publikationsdatum
28.01.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-023-09599-3

Premium Partner