Skip to main content
Erschienen in: Journal of Materials Science 16/2015

01.08.2015 | Original Paper

Mean stress sensitivity of spring steel in the very high cycle fatigue regime

verfasst von: R. Schuller, U. Karr, D. Irrasch, M. Fitzka, M. Hahn, M. Bacher-Höchst, H. Mayer

Erschienen in: Journal of Materials Science | Ausgabe 16/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of load ratio on the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of shot-peened VDSiCr spring steel is investigated. S–N curves are measured with ultrasonic fatigue testing equipment at load ratio R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Failures either occur below 5 × 106 or above 5 × 108 cycles. In the HCF regime cracks start exclusively at the surface. In the VHCF regime crack initiation occurs solely in the interior, at grain boundaries, inclusions or (rarely) in the matrix. The S–N curves continue to decrease beyond 109 cycles, most pronounced for R = −1 where the mean cyclic strength at 1010 cycles is 5 % lower than at 109 cycles. VHCF strength presented in a Haigh diagram can be very well approximated with a straight line. The mean stress sensitivity factor is M = 0.47 for load ratios between R = −1 and R = 0.5.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Naito T, Ueda H, Kikuchui M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic micro-structure near the surface. Metall Trans 15A:1431–1436CrossRef Naito T, Ueda H, Kikuchui M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic micro-structure near the surface. Metall Trans 15A:1431–1436CrossRef
2.
Zurück zum Zitat Asami K, Sugiyama Y (1985) Fatigue strength of various surface hardened steels. J Heat Treat Technol Assoc 25:147–150 Asami K, Sugiyama Y (1985) Fatigue strength of various surface hardened steels. J Heat Treat Technol Assoc 25:147–150
3.
Zurück zum Zitat Murakami Y, Takada M, Toriyama T (1998) Super-long life tension–compression fatigue properties of quenched and tempered 0.46 % carbon steel. Int J Fatigue 16:661–667CrossRef Murakami Y, Takada M, Toriyama T (1998) Super-long life tension–compression fatigue properties of quenched and tempered 0.46 % carbon steel. Int J Fatigue 16:661–667CrossRef
4.
Zurück zum Zitat Nishijima S, Kanazawa K (1999) Stepwise S–N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct 22:601–607CrossRef Nishijima S, Kanazawa K (1999) Stepwise S–N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct 22:601–607CrossRef
5.
Zurück zum Zitat Wang QY, Berard JY, Rathery S, Bathias C (1999) High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Eng Mater Struct 22:673–677CrossRef Wang QY, Berard JY, Rathery S, Bathias C (1999) High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Eng Mater Struct 22:673–677CrossRef
6.
Zurück zum Zitat Shiozawa K, Lu L, Ishihara S (2001) S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 24:781–790CrossRef Shiozawa K, Lu L, Ishihara S (2001) S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 24:781–790CrossRef
7.
Zurück zum Zitat Ochi Y, Matsumura T, Masaki K, Yoshida S (2002) High-cycle rotating bending fatigue property in very long life regime of high-strength steel. Fatigue Fract Eng Mater Struct 25:823–830CrossRef Ochi Y, Matsumura T, Masaki K, Yoshida S (2002) High-cycle rotating bending fatigue property in very long life regime of high-strength steel. Fatigue Fract Eng Mater Struct 25:823–830CrossRef
8.
Zurück zum Zitat Sakai T, Sato Y, Oguma N (2002) Characteristic S–N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct 25:765–773CrossRef Sakai T, Sato Y, Oguma N (2002) Characteristic S–N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct 25:765–773CrossRef
9.
Zurück zum Zitat Abe T, Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of 1800 MPa class spring steel. Fatigue Fract Eng Mater Struct 27:159–167CrossRef Abe T, Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of 1800 MPa class spring steel. Fatigue Fract Eng Mater Struct 27:159–167CrossRef
10.
Zurück zum Zitat Chai G (2006) The formation of subsurface non-defect fatigue crack origins. Int J Fatigue 28:1533–1539CrossRef Chai G (2006) The formation of subsurface non-defect fatigue crack origins. Int J Fatigue 28:1533–1539CrossRef
11.
Zurück zum Zitat Furuya Y, Hirukawa H, Kimura T, Hayaishi M (2007) Gigacycle fatigue properties of high-strength steels according to inclusion and ODA sizes. Metall Trans A 38A:1722–1730CrossRef Furuya Y, Hirukawa H, Kimura T, Hayaishi M (2007) Gigacycle fatigue properties of high-strength steels according to inclusion and ODA sizes. Metall Trans A 38A:1722–1730CrossRef
12.
Zurück zum Zitat Yu Y, Gu JL, Bai BZ, Liu YB, Li SX (2009) Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater Sci Eng A 527:212–217CrossRef Yu Y, Gu JL, Bai BZ, Liu YB, Li SX (2009) Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater Sci Eng A 527:212–217CrossRef
13.
Zurück zum Zitat Li W, Sakai T, Wakita M, Mimura S (2012) Effect of surface finishing and loading condition on competing failure mode of clean spring steel in very high cycle fatigue regime. Mater Sci Eng A 552:301–309CrossRef Li W, Sakai T, Wakita M, Mimura S (2012) Effect of surface finishing and loading condition on competing failure mode of clean spring steel in very high cycle fatigue regime. Mater Sci Eng A 552:301–309CrossRef
14.
Zurück zum Zitat Mayer H, Haydn W, Schuller R, Issler S, Furtner B, Bacher-Höchst M (2009) Very high cycle fatigue properties of bainitic high-carbon–chromium steel. Int J Fatigue 31:242–249CrossRef Mayer H, Haydn W, Schuller R, Issler S, Furtner B, Bacher-Höchst M (2009) Very high cycle fatigue properties of bainitic high-carbon–chromium steel. Int J Fatigue 31:242–249CrossRef
15.
Zurück zum Zitat Li W, Sakai T, Wakita M, Mimura S (2014) Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. Int J Fatigue 60:48–56CrossRef Li W, Sakai T, Wakita M, Mimura S (2014) Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. Int J Fatigue 60:48–56CrossRef
16.
Zurück zum Zitat Li SX (2012) Effects of inclusions on very high cycle fatigue properties of high strength steels. Int Mater Rev 57:92–114CrossRef Li SX (2012) Effects of inclusions on very high cycle fatigue properties of high strength steels. Int Mater Rev 57:92–114CrossRef
17.
Zurück zum Zitat Sun C, Lei Z, Xie J, Hong Y (2013) Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. Int J Fatigue 48:19–27CrossRef Sun C, Lei Z, Xie J, Hong Y (2013) Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. Int J Fatigue 48:19–27CrossRef
18.
Zurück zum Zitat Zimmermann M (2012) Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int Mater Rev 57:73–91CrossRef Zimmermann M (2012) Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int Mater Rev 57:73–91CrossRef
19.
Zurück zum Zitat Sakai T, Sato Y, Nagano Y, Takeda M, Oguma N (2006) Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. Int J Fatigue 28:1547–1554CrossRef Sakai T, Sato Y, Nagano Y, Takeda M, Oguma N (2006) Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. Int J Fatigue 28:1547–1554CrossRef
20.
Zurück zum Zitat Shiozawa K, Hasegawa T, Kashiwagi Y, Lu L (2009) Very high cycle fatigue properties of bearing steel under axial loading condition. Int J Fatigue 31:880–888CrossRef Shiozawa K, Hasegawa T, Kashiwagi Y, Lu L (2009) Very high cycle fatigue properties of bearing steel under axial loading condition. Int J Fatigue 31:880–888CrossRef
21.
Zurück zum Zitat Nakajima M, Tokaji K, Itoga H, Shimizu T (2010) Effect of loading condition on very high cycle fatigue behavior in a high strength steel. Int J Fatigue 32:475–480CrossRef Nakajima M, Tokaji K, Itoga H, Shimizu T (2010) Effect of loading condition on very high cycle fatigue behavior in a high strength steel. Int J Fatigue 32:475–480CrossRef
22.
Zurück zum Zitat Karsch T, Bomas H, Zoch HW, Mändl S (2014) Influence of hydrogen content and microstructure on the fatigue behaviour of steel SAE 52100 in the VHCF regime. Int J Fatigue 60:74–89CrossRef Karsch T, Bomas H, Zoch HW, Mändl S (2014) Influence of hydrogen content and microstructure on the fatigue behaviour of steel SAE 52100 in the VHCF regime. Int J Fatigue 60:74–89CrossRef
23.
Zurück zum Zitat Sander M, Müller T, Lebahn J (2014) Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in the VHCF regime. Int J Fatigue 62:10–20CrossRef Sander M, Müller T, Lebahn J (2014) Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in the VHCF regime. Int J Fatigue 62:10–20CrossRef
24.
Zurück zum Zitat Kovacs S, Beck T, Singheiser L (2013) Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime. Int J Fatigue 49:90–99CrossRef Kovacs S, Beck T, Singheiser L (2013) Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime. Int J Fatigue 49:90–99CrossRef
25.
Zurück zum Zitat Schönbauer BM, Perlega A, Karr UP, Gandy D, Stanzl-Tschegg SE (2015) Pit-to-crack transition under cyclic loading in 12 % Cr steam turbine blade steel. Int J Fatigue 76:19–32CrossRef Schönbauer BM, Perlega A, Karr UP, Gandy D, Stanzl-Tschegg SE (2015) Pit-to-crack transition under cyclic loading in 12 % Cr steam turbine blade steel. Int J Fatigue 76:19–32CrossRef
26.
Zurück zum Zitat Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part I: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct 23:893–902CrossRef Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part I: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct 23:893–902CrossRef
27.
Zurück zum Zitat Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part II: a fractographic investigation. Fatigue Fract Eng Mater Struct 23:903–910CrossRef Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part II: a fractographic investigation. Fatigue Fract Eng Mater Struct 23:903–910CrossRef
28.
Zurück zum Zitat Tanaka K, Akiniwa Y (2002) Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct 25:775–784CrossRef Tanaka K, Akiniwa Y (2002) Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct 25:775–784CrossRef
29.
Zurück zum Zitat Hong Y, Lei Z, Sun C, Zhao A (2014) Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int J Fatigue 58:144–151CrossRef Hong Y, Lei Z, Sun C, Zhao A (2014) Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int J Fatigue 58:144–151CrossRef
30.
Zurück zum Zitat Zhao A, Xie J, Sun C, Lei Z, Hong Y (2011) Prediction of threshold value for FGA formation. Mater Sci Eng A 528:6871–6877 Zhao A, Xie J, Sun C, Lei Z, Hong Y (2011) Prediction of threshold value for FGA formation. Mater Sci Eng A 528:6871–6877
31.
Zurück zum Zitat Ochi Y, Masaki K, Matsumura T, Sekino T (2001) Effect of shot-peening treatment on high cycle fatigue property of ductile cast iron. Int J Fatigue 23:441–448CrossRef Ochi Y, Masaki K, Matsumura T, Sekino T (2001) Effect of shot-peening treatment on high cycle fatigue property of ductile cast iron. Int J Fatigue 23:441–448CrossRef
32.
Zurück zum Zitat Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216CrossRef Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216CrossRef
33.
Zurück zum Zitat Rios ERDL, Trull M, Levers A (2000) Modelling fatigue crack growth in shot-peened components of Al 2024-T351. Fatigue Fract Eng Mater Struct 23:709–716CrossRef Rios ERDL, Trull M, Levers A (2000) Modelling fatigue crack growth in shot-peened components of Al 2024-T351. Fatigue Fract Eng Mater Struct 23:709–716CrossRef
34.
Zurück zum Zitat Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon–chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822CrossRef Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon–chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822CrossRef
35.
Zurück zum Zitat Schuller R, Mayer H, Fayard A, Hahn M, Bacher-Höchst M (2013) Very high cycle fatigue of VDSiCr spring steel under torsional and axial loading. Mater Werkst 44:282–289CrossRef Schuller R, Mayer H, Fayard A, Hahn M, Bacher-Höchst M (2013) Very high cycle fatigue of VDSiCr spring steel under torsional and axial loading. Mater Werkst 44:282–289CrossRef
36.
Zurück zum Zitat Mayer H, Schuller R, Karr U, Irrasch D, Fitzka M, Hahn M, Bacher-Höchst M (2015) Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. Int J Fatigue 70:322–327CrossRef Mayer H, Schuller R, Karr U, Irrasch D, Fitzka M, Hahn M, Bacher-Höchst M (2015) Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. Int J Fatigue 70:322–327CrossRef
37.
Zurück zum Zitat Mayer H, Fitzka M, Schuller R (2013) Constant and variable amplitude ultrasonic fatigue of 2024 T351 aluminium alloy at different load ratios. Ultrasonics 53:1425–1432CrossRef Mayer H, Fitzka M, Schuller R (2013) Constant and variable amplitude ultrasonic fatigue of 2024 T351 aluminium alloy at different load ratios. Ultrasonics 53:1425–1432CrossRef
38.
Zurück zum Zitat Maenning WW (1997) Planning and evaluation of fatigue tests. In: Lampman SR, Davidson GM, Reidenbach F, Boring RL, Hammel A, Henry SD, Scott WW jr (eds) ASM handbook fatigue and fracture. ASM International, Materials Park, pp 303–313 Maenning WW (1997) Planning and evaluation of fatigue tests. In: Lampman SR, Davidson GM, Reidenbach F, Boring RL, Hammel A, Henry SD, Scott WW jr (eds) ASM handbook fatigue and fracture. ASM International, Materials Park, pp 303–313
39.
Zurück zum Zitat Itoga H, Tokaji K, Nakajima M, Ko H-N (2003) Effect of surface roughness on step-wise S–N characteristics in high strength steel. Int J Fatigue 25:379–385CrossRef Itoga H, Tokaji K, Nakajima M, Ko H-N (2003) Effect of surface roughness on step-wise S–N characteristics in high strength steel. Int J Fatigue 25:379–385CrossRef
40.
Zurück zum Zitat Tokaji K, Ko H-N, Nakajima M, Itoga H (2003) Effects of humidity on crack initiation mechanism and associated S–N characteristics in very high strength steels. Mater Sci Eng A A345:197–206CrossRef Tokaji K, Ko H-N, Nakajima M, Itoga H (2003) Effects of humidity on crack initiation mechanism and associated S–N characteristics in very high strength steels. Mater Sci Eng A A345:197–206CrossRef
41.
Zurück zum Zitat Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue 38:46–56CrossRef Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue 38:46–56CrossRef
42.
Zurück zum Zitat Shiozawa K, Lu L (2008) Internal fatigue failure mechanism of high strength steels in the gigacycle regime. Key Eng Mater 378–379:65–80CrossRef Shiozawa K, Lu L (2008) Internal fatigue failure mechanism of high strength steels in the gigacycle regime. Key Eng Mater 378–379:65–80CrossRef
43.
Zurück zum Zitat Sakai T (2007) Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. In: Allison JE, Jones JW, Larsen JM, Ritchie RO (eds) 4th international conference on very high cycle fatigue, TMS, Warrendale, Ann Arbor, pp 3–12 Sakai T (2007) Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. In: Allison JE, Jones JW, Larsen JM, Ritchie RO (eds) 4th international conference on very high cycle fatigue, TMS, Warrendale, Ann Arbor, pp 3–12
44.
Zurück zum Zitat Nakajima M, Tokaji K, Itoga H, Ko H-N (2003) Morphology of step-wise S–N curves depending on work-hardened layer and humidity in a high-strength steel. Fatigue Fract Eng Mater Struct 26:1113–1118CrossRef Nakajima M, Tokaji K, Itoga H, Ko H-N (2003) Morphology of step-wise S–N curves depending on work-hardened layer and humidity in a high-strength steel. Fatigue Fract Eng Mater Struct 26:1113–1118CrossRef
45.
Zurück zum Zitat Murakami Y, Yokoyama NN, Nagata J (2002) Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 25:735–746CrossRef Murakami Y, Yokoyama NN, Nagata J (2002) Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 25:735–746CrossRef
46.
Zurück zum Zitat Mayer H, Schuller R, Fitzka M, Tran D, Pennings B (2014) Very high cycle fatigue of nitrided 18Ni maraging steel sheet. Int J Fatigue 64:140–146CrossRef Mayer H, Schuller R, Fitzka M, Tran D, Pennings B (2014) Very high cycle fatigue of nitrided 18Ni maraging steel sheet. Int J Fatigue 64:140–146CrossRef
47.
Zurück zum Zitat Berger C, Kaiser B (2006) Results of very high cycle fatigue tests on helical compression springs. Int J Fatigue 28:1658–1663CrossRef Berger C, Kaiser B (2006) Results of very high cycle fatigue tests on helical compression springs. Int J Fatigue 28:1658–1663CrossRef
48.
Zurück zum Zitat Kaiser B, Pyttel B, Berger C (2011) VHCF-behavior of helical compression springs made of different materials. Int J Fatigue 33:23–32CrossRef Kaiser B, Pyttel B, Berger C (2011) VHCF-behavior of helical compression springs made of different materials. Int J Fatigue 33:23–32CrossRef
49.
Zurück zum Zitat Murakami Y, Endo M (1992) The area parameter model for small defects and nonmetallic inclusions in fatigue strength: experimental evidences and applications. In: Blom AF, Beevers CJ (eds) Theoretical concepts and numerical analysis of fatigue. Engineering Materials Advisory Services Ltd., Cradley Heath, Warley, Birmingham, pp 51–71 Murakami Y, Endo M (1992) The area parameter model for small defects and nonmetallic inclusions in fatigue strength: experimental evidences and applications. In: Blom AF, Beevers CJ (eds) Theoretical concepts and numerical analysis of fatigue. Engineering Materials Advisory Services Ltd., Cradley Heath, Warley, Birmingham, pp 51–71
Metadaten
Titel
Mean stress sensitivity of spring steel in the very high cycle fatigue regime
verfasst von
R. Schuller
U. Karr
D. Irrasch
M. Fitzka
M. Hahn
M. Bacher-Höchst
H. Mayer
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9098-6

Weitere Artikel der Ausgabe 16/2015

Journal of Materials Science 16/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.