Skip to main content
Erschienen in: Journal of Materials Science 21/2015

01.11.2015 | Original Paper

Mechanical and thermal properties of low temperature sintered silicon carbide using a preceramic polymer as binder

verfasst von: Mehrad Mehr, Donald T. Moore, J. Roberto Esquivel-Elizondo, Juan C. Nino

Erschienen in: Journal of Materials Science | Ausgabe 21/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon carbide is used for a variety of applications, however, sintering still remains a challenge due to the high temperature and pressure required as well as the need for sintering aids. The use of preceramic polymers as binder is a promising technique for pressureless low-temperature sintering of SiC without sintering aids. However, the mechanical and thermophysical properties as well as the microstructure of bodies sintered through this technique has not been extensively documented. One of the main polymers which has gained attention in the past few years as a SiC preceramic is allylhydridopolycarbosilane (AHPCS). Here, using AHPCS as binder, silicon carbide pellets were sintered at temperatures as low as 930 °C, and the microstructural, mechanical, and thermophysical property characterization is presented. Compared to conventionally sintered SiC, the material shows similar fracture toughness, lower hardness, strength, and thermal conductivity. The observed properties are explained as a result of residual porosity combined with amorphous SiC at the grain boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yajima S, Shishido T, Kayano H, Okamura K, Omori M, Hayashi J (1976) SiC sintered bodies with 3-dimensional polycarbosilane as binder. Nature 264(5583):238–239CrossRef Yajima S, Shishido T, Kayano H, Okamura K, Omori M, Hayashi J (1976) SiC sintered bodies with 3-dimensional polycarbosilane as binder. Nature 264(5583):238–239CrossRef
2.
Zurück zum Zitat Dressler W, Riedel R (1997) Progress in silicon-based non-oxide structural ceramics. Int J Refract Met Hard Mater 15(1–3):13–47CrossRef Dressler W, Riedel R (1997) Progress in silicon-based non-oxide structural ceramics. Int J Refract Met Hard Mater 15(1–3):13–47CrossRef
8.
Zurück zum Zitat Bouillon E, Mocaer D, Villeneuve JF, Pailler R, Naslain R, Monthioux M, Oberlin A, Guimon C, Pfister G (1991) Composition microstructure property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 1400°C. J Mater Sci 26(6):1517–1530. doi:10.1007/BF00544661 CrossRef Bouillon E, Mocaer D, Villeneuve JF, Pailler R, Naslain R, Monthioux M, Oberlin A, Guimon C, Pfister G (1991) Composition microstructure property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 1400°C. J Mater Sci 26(6):1517–1530. doi:10.​1007/​BF00544661 CrossRef
9.
Zurück zum Zitat Hasegawa Y, Iimura M, Yajima S (1980) Synthesis of continuous silicon-carbide fiber: part 2. Conversion of polycarbosilane fiber into silicon-carbide fibers. J Mater Sci 15(3):720–728. doi:10.1007/BF00551739 CrossRef Hasegawa Y, Iimura M, Yajima S (1980) Synthesis of continuous silicon-carbide fiber: part 2. Conversion of polycarbosilane fiber into silicon-carbide fibers. J Mater Sci 15(3):720–728. doi:10.​1007/​BF00551739 CrossRef
10.
Zurück zum Zitat Hasegawa Y, Okamura K (1983) Synthesis of continuous silicon-carbide fiber: part 3. Pyrolysis process of polycarbosilane and structure of the products. J Mater Sci 18(12):3633–3648. doi:10.1007/BF00540736 CrossRef Hasegawa Y, Okamura K (1983) Synthesis of continuous silicon-carbide fiber: part 3. Pyrolysis process of polycarbosilane and structure of the products. J Mater Sci 18(12):3633–3648. doi:10.​1007/​BF00540736 CrossRef
14.
15.
Zurück zum Zitat Kotani M, Nishiyabu K, Matsuzaki S, Tanaka S (2011) Processing of polymer-derived porous SiC body using allylhydridopolycarbosilane (AHPCS) and PMMA microbeads. J Ceram Soc Jpn 119(1391):563–569. doi:10.2109/jcersj2.119.563 CrossRef Kotani M, Nishiyabu K, Matsuzaki S, Tanaka S (2011) Processing of polymer-derived porous SiC body using allylhydridopolycarbosilane (AHPCS) and PMMA microbeads. J Ceram Soc Jpn 119(1391):563–569. doi:10.​2109/​jcersj2.​119.​563 CrossRef
16.
Zurück zum Zitat Berbon M, Calabrese M (2002) Effect of 1600°C heat treatment on C/SiC composites fabricated by polymer infiltration and pyrolysis with allylhydridopolycarbosilane. J Am Ceram Soc 85(7):1891–1893CrossRef Berbon M, Calabrese M (2002) Effect of 1600°C heat treatment on C/SiC composites fabricated by polymer infiltration and pyrolysis with allylhydridopolycarbosilane. J Am Ceram Soc 85(7):1891–1893CrossRef
17.
Zurück zum Zitat Kotani M, Katoh Y, Kohyama A, Narisawa M (2003) Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites. J Ceram Soc Jpn 111(5):300–307CrossRef Kotani M, Katoh Y, Kohyama A, Narisawa M (2003) Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites. J Ceram Soc Jpn 111(5):300–307CrossRef
18.
20.
Zurück zum Zitat Puerta AR, Remsen EE, Bradley MG, Sherwood W, Sneddon LG (2003) Synthesis and ceramic conversion reactions of 9-BBN-modified allylhydridopolycarbosilane: a new single-source precursor to boron-modified silicon carbide. Chem Mater 15(2):478–485. doi:10.1021/Cm020697i CrossRef Puerta AR, Remsen EE, Bradley MG, Sherwood W, Sneddon LG (2003) Synthesis and ceramic conversion reactions of 9-BBN-modified allylhydridopolycarbosilane: a new single-source precursor to boron-modified silicon carbide. Chem Mater 15(2):478–485. doi:10.​1021/​Cm020697i CrossRef
21.
22.
Zurück zum Zitat Mcgeary RK (1961) Mechanical packing of spherical particles. J Am Ceram Soc 44(10):513–522CrossRef Mcgeary RK (1961) Mechanical packing of spherical particles. J Am Ceram Soc 44(10):513–522CrossRef
23.
Zurück zum Zitat Knippenberg W (1963) The growth of SiC by recrystallization and sublimation. Growth Phenom Silicon Carbide 18(3):244–266 Knippenberg W (1963) The growth of SiC by recrystallization and sublimation. Growth Phenom Silicon Carbide 18(3):244–266
24.
Zurück zum Zitat Krishna P, Marshall R, Ryan C (1971) The discovery of a 2H-3C solid state transformation in silicon carbide single crystals. J Cryst Growth 8(1):129–131CrossRef Krishna P, Marshall R, Ryan C (1971) The discovery of a 2H-3C solid state transformation in silicon carbide single crystals. J Cryst Growth 8(1):129–131CrossRef
25.
Zurück zum Zitat Harris GL (1995) Properties of silicon carbide, vol 13. IEE, London Harris GL (1995) Properties of silicon carbide, vol 13. IEE, London
26.
Zurück zum Zitat Moraes KV, Interrante LV (2003) Processing, fracture toughness, and vickers hardness of allylhyd ridopolycarbosilane-derived silicon carbide. J Am Ceram Soc 86(2):342–346CrossRef Moraes KV, Interrante LV (2003) Processing, fracture toughness, and vickers hardness of allylhyd ridopolycarbosilane-derived silicon carbide. J Am Ceram Soc 86(2):342–346CrossRef
27.
Zurück zum Zitat Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) A critical-evaluation of indentation techniques for measuring fracture-toughness: part 2. Strength method. J Am Ceram Soc 64(9):539–543CrossRef Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) A critical-evaluation of indentation techniques for measuring fracture-toughness: part 2. Strength method. J Am Ceram Soc 64(9):539–543CrossRef
28.
Zurück zum Zitat Wachtman JB, Capps W, Mandel J (1972) Biaxial flexure tests of ceramic substrates. J Mater 7(2):188–194 Wachtman JB, Capps W, Mandel J (1972) Biaxial flexure tests of ceramic substrates. J Mater 7(2):188–194
29.
Zurück zum Zitat Clark LM, Taylor RE (1975) Radiation loss in flash method for thermal-diffusivity. J Appl Phys 46(2):714–719CrossRef Clark LM, Taylor RE (1975) Radiation loss in flash method for thermal-diffusivity. J Appl Phys 46(2):714–719CrossRef
31.
Zurück zum Zitat Starfire® Systems Inc StarPCS SMP-10 Starfire® Systems Inc StarPCS SMP-10
32.
Zurück zum Zitat Dire S, Tagliazucca V, Salvadori L, Soraru GD (2011) Preparation of dense and porous silicon oxycarbide submicrometer-sized spheres using a modified stober process. J Am Ceram Soc 94(11):3819–3824CrossRef Dire S, Tagliazucca V, Salvadori L, Soraru GD (2011) Preparation of dense and porous silicon oxycarbide submicrometer-sized spheres using a modified stober process. J Am Ceram Soc 94(11):3819–3824CrossRef
33.
Zurück zum Zitat Low I-M (2013) MAX phases and ultra-high temperature ceramics for extreme environments. IGI Global, HersheyCrossRef Low I-M (2013) MAX phases and ultra-high temperature ceramics for extreme environments. IGI Global, HersheyCrossRef
35.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095CrossRef
36.
Zurück zum Zitat Baraton MI, ElShall MS (1995) Synthesis and characterization of nanoscale metal oxides and carbides. 2. Micro-Raman and FT-IR surface studies of a silicon carbide powder. Nanostruct Mater 6(1–4):301–304. doi:10.1016/0965-9773(95)00057-7 CrossRef Baraton MI, ElShall MS (1995) Synthesis and characterization of nanoscale metal oxides and carbides. 2. Micro-Raman and FT-IR surface studies of a silicon carbide powder. Nanostruct Mater 6(1–4):301–304. doi:10.​1016/​0965-9773(95)00057-7 CrossRef
37.
Zurück zum Zitat Trassl S, Motz G, Rossler E, Ziegler G (2002) Characterization of the free-carbon phase in precursor-derived Si-C-N ceramics: I, spectroscopic methods. J Am Ceram Soc 85(1):239–244CrossRef Trassl S, Motz G, Rossler E, Ziegler G (2002) Characterization of the free-carbon phase in precursor-derived Si-C-N ceramics: I, spectroscopic methods. J Am Ceram Soc 85(1):239–244CrossRef
38.
Zurück zum Zitat Jang BK, Kim SY, Han IS, Seo DW, Hong KS, Woo SK, Sakka Y (2010) Influence of uni and bi-modal SiC composition on mechanical properties and microstructure of reaction-bonded SiC ceramics. J Ceram Soc Jpn 118(1383):1028–1031CrossRef Jang BK, Kim SY, Han IS, Seo DW, Hong KS, Woo SK, Sakka Y (2010) Influence of uni and bi-modal SiC composition on mechanical properties and microstructure of reaction-bonded SiC ceramics. J Ceram Soc Jpn 118(1383):1028–1031CrossRef
42.
Zurück zum Zitat Senor DJ, Youngblood GE, Greenwood LR, Archer DV, Alexander DL, Chen MC, Newsome GA (2003) Defect structure and evolution in silicon carbide irradiated to 1 dpa-SiC at 1100°C. J Nucl Mater 317(2–3):145–159. doi:10.1016/S0022-3115(03)00077-1 CrossRef Senor DJ, Youngblood GE, Greenwood LR, Archer DV, Alexander DL, Chen MC, Newsome GA (2003) Defect structure and evolution in silicon carbide irradiated to 1 dpa-SiC at 1100°C. J Nucl Mater 317(2–3):145–159. doi:10.​1016/​S0022-3115(03)00077-1 CrossRef
44.
Zurück zum Zitat Shih CH, Tulenko JS, Baney RH (2011) The effect of mixing methods and polymer infiltration and pyrolysis (PIP) cycles on the densification of silicon carbide inert matrix fuel through a polymer precursor route. J Nucl Mater 419(1–3):63–71. doi:10.1016/j.jnucmat.2011.07.020 CrossRef Shih CH, Tulenko JS, Baney RH (2011) The effect of mixing methods and polymer infiltration and pyrolysis (PIP) cycles on the densification of silicon carbide inert matrix fuel through a polymer precursor route. J Nucl Mater 419(1–3):63–71. doi:10.​1016/​j.​jnucmat.​2011.​07.​020 CrossRef
Metadaten
Titel
Mechanical and thermal properties of low temperature sintered silicon carbide using a preceramic polymer as binder
verfasst von
Mehrad Mehr
Donald T. Moore
J. Roberto Esquivel-Elizondo
Juan C. Nino
Publikationsdatum
01.11.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9252-1

Weitere Artikel der Ausgabe 21/2015

Journal of Materials Science 21/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.