Skip to main content

2010 | OriginalPaper | Buchkapitel

Mechanical Energy Harvesting Using Wurtzite Nanowires

verfasst von : Xudong Wang, Zhong Lin Wang

Erschienen in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews a novel technology that uses piezoelectric nanowires to harvest nanoscale mechanical energy. Wurtzite ZnO nanowires were first applied for this purpose. Due to the bending of nanowires, the piezoelectric effect induces positive and negative potentials on the stretched surface and compressed surface, respectively. This effect has been proved by using a conductive AFM tip to deflect individual wurtzite ZnO and CdS nanowires as well as vertically aligned ZnO nanowire arrays. On the basis of this phenomenon, a prototype nanodevice (nanogenerator) has been successfully developed to convert ultrasonic wave energy into electricity. After optimization, the nanogenerator’s output has reached ∼83 nW/cm2, which shows a great potential to power nanosensors. A flexible substrate and textile fibers were also integrated with the ZnO nanowire array for harvesting energy from low-frequency perturbations. At the end of this chapter, several pathways are suggested for further performance improvements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Song J.H., J. Zhou, Z.L. Wang. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters 2006; 6: 1656–1662.CrossRef Song J.H., J. Zhou, Z.L. Wang. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters 2006; 6: 1656–1662.CrossRef
2.
Zurück zum Zitat Wang X.D., C.J. Summers, Z.L. Wang. Large-scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters 2004; 4: 423–426.CrossRef Wang X.D., C.J. Summers, Z.L. Wang. Large-scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters 2004; 4: 423–426.CrossRef
3.
Zurück zum Zitat Wang X.D., J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang. Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B 2006; 110: 7720–7724.CrossRef Wang X.D., J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang. Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B 2006; 110: 7720–7724.CrossRef
4.
Zurück zum Zitat Wang Z.L., J.H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006; 312: 242–246.CrossRef Wang Z.L., J.H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006; 312: 242–246.CrossRef
5.
Zurück zum Zitat Song J.H., X.D. Wang, E. Riedo, Z.L. Wang. Elastic Property of Vertically Aligned Nanowires. Nano Letters 2005; 5: 1954–1958.CrossRef Song J.H., X.D. Wang, E. Riedo, Z.L. Wang. Elastic Property of Vertically Aligned Nanowires. Nano Letters 2005; 5: 1954–1958.CrossRef
6.
Zurück zum Zitat Lin Y.F., J.H. Song, Y. Ding, S.Y. Liu, Z.L. Wang. Piezoelectric Nanogenerator Using CdS Nanowires. Applied Physics Letters 2008; 92: 022105.CrossRef Lin Y.F., J.H. Song, Y. Ding, S.Y. Liu, Z.L. Wang. Piezoelectric Nanogenerator Using CdS Nanowires. Applied Physics Letters 2008; 92: 022105.CrossRef
7.
Zurück zum Zitat Cao B., Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, S.-T. Lee. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays. Advanced Functional Materials 2007; 17: 1501–1506.CrossRef Cao B., Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, S.-T. Lee. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays. Advanced Functional Materials 2007; 17: 1501–1506.CrossRef
8.
Zurück zum Zitat Wang Z.L., X.D. Wang, J.H. Song, J. Liu, Y.F. Gao. Piezoelectric Nanogenerators for Self-Powered Nanodevices. IEEE Pervasive Computing 2008; 7: 49–55.CrossRef Wang Z.L., X.D. Wang, J.H. Song, J. Liu, Y.F. Gao. Piezoelectric Nanogenerators for Self-Powered Nanodevices. IEEE Pervasive Computing 2008; 7: 49–55.CrossRef
9.
Zurück zum Zitat Gao Y.F., Z.L. Wang. Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Letters 2007; 7: 2499–2505.CrossRef Gao Y.F., Z.L. Wang. Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Letters 2007; 7: 2499–2505.CrossRef
10.
Zurück zum Zitat Wang X.D, J. Song, P. Li, J.H. Ryou, R.D. Dupuis, C.J. Summers, Z.L.Wang. Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5 N Substrates. Journal of the American Chemical Society 2005; 127: 7920–7923.CrossRef Wang X.D, J. Song, P. Li, J.H. Ryou, R.D. Dupuis, C.J. Summers, Z.L.Wang. Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5 N Substrates. Journal of the American Chemical Society 2005; 127: 7920–7923.CrossRef
11.
Zurück zum Zitat Wang X.D., J.H. Song, J. Liu, Z.L. Wang. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 2007; 316: 102–105.CrossRef Wang X.D., J.H. Song, J. Liu, Z.L. Wang. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 2007; 316: 102–105.CrossRef
12.
Zurück zum Zitat Wang X.D., J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang. Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B 2006; 110: 7720–7724.CrossRef Wang X.D., J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang. Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B 2006; 110: 7720–7724.CrossRef
13.
Zurück zum Zitat Frühauf J., S. Krönert. Wet Etching of Silicon Gratings with Triangular Profiles. Microsystem Technologies 2005; 11: 1287–1291.CrossRef Frühauf J., S. Krönert. Wet Etching of Silicon Gratings with Triangular Profiles. Microsystem Technologies 2005; 11: 1287–1291.CrossRef
14.
Zurück zum Zitat Wang X.D., J. Liu, J.H. Song, Z.L. Wang. Integrated Nanogenerators in Biofluid. Nano Letters 2007; 7: 2475–2479.CrossRef Wang X.D., J. Liu, J.H. Song, Z.L. Wang. Integrated Nanogenerators in Biofluid. Nano Letters 2007; 7: 2475–2479.CrossRef
15.
Zurück zum Zitat Liu J., P. Fei, J.H. Song, X.D. Wang, C.S. Lao, R. Tummala, Z.L. Wang. Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. Nano Letters 2008; 8: 328–332.CrossRef Liu J., P. Fei, J.H. Song, X.D. Wang, C.S. Lao, R. Tummala, Z.L. Wang. Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. Nano Letters 2008; 8: 328–332.CrossRef
16.
17.
Zurück zum Zitat Liu J., P. Fei, J. Zhou, R. Tummala, Z.L. Wang. Toward High Output-Power Nanogenerator. Applied Physics Letters 2008; 92: 173105.CrossRef Liu J., P. Fei, J. Zhou, R. Tummala, Z.L. Wang. Toward High Output-Power Nanogenerator. Applied Physics Letters 2008; 92: 173105.CrossRef
18.
Zurück zum Zitat Yu C., Q. Hao, S. Saha, L. Shi, X. Kong, Z.L. Wang. Integration of Metal Oxide Nanobelts with Microsystems for Nerve Agent Detection. Applied Physics Letters 2005; 86: 063101.CrossRef Yu C., Q. Hao, S. Saha, L. Shi, X. Kong, Z.L. Wang. Integration of Metal Oxide Nanobelts with Microsystems for Nerve Agent Detection. Applied Physics Letters 2005; 86: 063101.CrossRef
19.
Zurück zum Zitat Gao P.G., J.H. Song, J. Liu, Z.L. Wang. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials 2007; 19: 67–72.CrossRef Gao P.G., J.H. Song, J. Liu, Z.L. Wang. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials 2007; 19: 67–72.CrossRef
20.
Zurück zum Zitat Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials 2003; 15: 464–466.CrossRef Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials 2003; 15: 464–466.CrossRef
21.
Zurück zum Zitat Qin Y., X.D. Wang, Z.L. Wang. Microfibre-Nanowire Hybrid Structure for Energy Scavengings. Nature 2008; 451: 809–813.CrossRef Qin Y., X.D. Wang, Z.L. Wang. Microfibre-Nanowire Hybrid Structure for Energy Scavengings. Nature 2008; 451: 809–813.CrossRef
22.
Zurück zum Zitat Zhou J., N.S. Xu, Z.L. Wang. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials 2006; 18: 2432–2435.CrossRef Zhou J., N.S. Xu, Z.L. Wang. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials 2006; 18: 2432–2435.CrossRef
23.
Zurück zum Zitat Alexe M., S. Senz, M.A. Schubert, D. Hesse, U. Gosele, Energy Harvesting Using Nanowires? Advanced Materials 2008; 20: 4021.CrossRef Alexe M., S. Senz, M.A. Schubert, D. Hesse, U. Gosele, Energy Harvesting Using Nanowires? Advanced Materials 2008; 20: 4021.CrossRef
24.
Zurück zum Zitat Wang Z.L. Energy Harvesting Using Piezoelectric Nanowires – A Correspondence on ‘Energy Harvesting Using Nanowires?’ by Alexe et al. Advanced Materials 2009; 21: 1311–1315.CrossRef Wang Z.L. Energy Harvesting Using Piezoelectric Nanowires – A Correspondence on ‘Energy Harvesting Using Nanowires?’ by Alexe et al. Advanced Materials 2009; 21: 1311–1315.CrossRef
Metadaten
Titel
Mechanical Energy Harvesting Using Wurtzite Nanowires
verfasst von
Xudong Wang
Zhong Lin Wang
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.