Skip to main content
Erschienen in: Acta Mechanica Sinica 4/2020

17.06.2020 | Research Paper

Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites

verfasst von: Wanhong Tang, Jie Zhang, Jianyang Wu, Jinyou Shao, Peng Ding, Guozhen Hou, Xiaoming Chen

Erschienen in: Acta Mechanica Sinica | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics (MD) simulations of the titanium-graphene nanocomposites (TiGNCs) under uniaxial tension are carried out to investigate the mechanical properties and reinforcement mechanism of graphene in composites. It is found that introduction of mechanically robust graphene limits the strain-induced dislocation and amorphization and thereby highly improves the mechanical properties of metallic titanium that are greatly affected by the crystal stacking orientation of graphene and titanium layers. The thickness of titanium layers, interface interaction and working temperature play an important role in the mechanical strength and elastic moduli of composites. The results show the mechanical properties of TiGNCs are monotonically enhanced with reduction of the titanium layer thickness and working temperature, and the Young’s modulus obtained by MD simulation are higher than that predicted by the rule of mixture (ROM) due to consideration of interfacial interaction in computational calculation. In addition, once the critical thickness of titanium layer is reached, graphene wrinkles are induced in composites because of Poisson’s effect induced large lateral compression stress in the interface region. This study provides helpful insights into fundamental understanding reinforcing mechanism of graphene and ultimately contribute to the optimal design and performance of mechanically robust graphene-based metallic composites.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stankovich, S., Dommett, G.H.B., Kohlhaas, K.M., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006) Stankovich, S., Dommett, G.H.B., Kohlhaas, K.M., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)
2.
Zurück zum Zitat Novoselov, K.S., Fal′ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012) Novoselov, K.S., Fal′ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)
3.
Zurück zum Zitat Xu, X., Rong, D., Lim, C.W., et al.: An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets. Acta Mech. Sin. 33, 912–925 (2017)MathSciNetMATH Xu, X., Rong, D., Lim, C.W., et al.: An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets. Acta Mech. Sin. 33, 912–925 (2017)MathSciNetMATH
4.
Zurück zum Zitat Pan, D., Li, Y., Wang, T.-C., et al.: Bending-induced extension in two-dimensional crystals. Acta Mech. Sin. 33, 71–76 (2017) Pan, D., Li, Y., Wang, T.-C., et al.: Bending-induced extension in two-dimensional crystals. Acta Mech. Sin. 33, 71–76 (2017)
5.
Zurück zum Zitat Meng, X.-H., Li, M., Kang, Z., et al.: Folding of multi-layer graphene sheets induced by van der Waals interaction. Acta Mech. Sin. 30, 410–417 (2014)MathSciNetMATH Meng, X.-H., Li, M., Kang, Z., et al.: Folding of multi-layer graphene sheets induced by van der Waals interaction. Acta Mech. Sin. 30, 410–417 (2014)MathSciNetMATH
6.
Zurück zum Zitat Zhao, Y., Dong, S., Yu, P., et al.: Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets. Acta Mech. Sin. 34, 542–548 (2018) Zhao, Y., Dong, S., Yu, P., et al.: Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets. Acta Mech. Sin. 34, 542–548 (2018)
7.
Zurück zum Zitat Chu, K., Wang, X., Li, Y., et al.: Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018) Chu, K., Wang, X., Li, Y., et al.: Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018)
8.
Zurück zum Zitat Wang, S., Han, S., Xin, G., et al.: High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater. Des. 139, 181–187 (2018) Wang, S., Han, S., Xin, G., et al.: High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater. Des. 139, 181–187 (2018)
9.
Zurück zum Zitat Khalil, I., Rahmati, S., Muhd Julkapli, N., et al.: Graphene metal nanocomposites—Recent progress in electrochemical biosensing applications. J. Ind. Eng. Chem. 59, 425–439 (2018) Khalil, I., Rahmati, S., Muhd Julkapli, N., et al.: Graphene metal nanocomposites—Recent progress in electrochemical biosensing applications. J. Ind. Eng. Chem. 59, 425–439 (2018)
10.
Zurück zum Zitat Montazeri, A., Mobarghei, A.: Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: new concepts and underlying mechanisms. J. Phys. Chem. Solids 115, 49–58 (2018) Montazeri, A., Mobarghei, A.: Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: new concepts and underlying mechanisms. J. Phys. Chem. Solids 115, 49–58 (2018)
11.
Zurück zum Zitat Hynes Navasingh, R.J., Kumar, R., Marimuthu, K., et al.: Graphene-based nano metal matrix composites: a review. In: Nanocarbon and Its Composites, Elsevier. 153–170 (2019) Hynes Navasingh, R.J., Kumar, R., Marimuthu, K., et al.: Graphene-based nano metal matrix composites: a review. In: Nanocarbon and Its Composites, Elsevier. 153–170 (2019)
12.
Zurück zum Zitat Bashirvand, S., Montazeri, A.: New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater. Des. 91, 306–313 (2016) Bashirvand, S., Montazeri, A.: New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater. Des. 91, 306–313 (2016)
13.
Zurück zum Zitat Guo, S.-J., Yang, Q.-S., He, X.Q., et al.: Modeling of interface cracking in copper–graphite composites by MD and CFE method. Compos. B Eng. 58, 586–592 (2014) Guo, S.-J., Yang, Q.-S., He, X.Q., et al.: Modeling of interface cracking in copper–graphite composites by MD and CFE method. Compos. B Eng. 58, 586–592 (2014)
14.
Zurück zum Zitat Hwang, J., Yoon, T., Jin, S.H., et al.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724–6729 (2013) Hwang, J., Yoon, T., Jin, S.H., et al.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724–6729 (2013)
15.
Zurück zum Zitat Song, Y., Chen, Y., Liu, W.W., et al.: Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 109, 256–263 (2016) Song, Y., Chen, Y., Liu, W.W., et al.: Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater. Des. 109, 256–263 (2016)
16.
Zurück zum Zitat Khan, M.E., Khan, M.M., Cho, M.H.: Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 10, 9427–9440 (2018) Khan, M.E., Khan, M.M., Cho, M.H.: Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 10, 9427–9440 (2018)
17.
Zurück zum Zitat Peng, Y., Lin, D., Justin Gooding, J., et al.: Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon 136, 329–336 (2018) Peng, Y., Lin, D., Justin Gooding, J., et al.: Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon 136, 329–336 (2018)
18.
Zurück zum Zitat Bhattacharya, A., Bhattacharya, S., Majumder, C., et al.: Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C 114, 10297–10301 (2010) Bhattacharya, A., Bhattacharya, S., Majumder, C., et al.: Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C 114, 10297–10301 (2010)
19.
Zurück zum Zitat Leong, W.S., Gong, H., Thong, J.T.L.: Low-contact-resistance graphene devices with nickel-etched-graphene contacts. ACS Nano 8, 994–1001 (2014) Leong, W.S., Gong, H., Thong, J.T.L.: Low-contact-resistance graphene devices with nickel-etched-graphene contacts. ACS Nano 8, 994–1001 (2014)
20.
Zurück zum Zitat Bartolucci, S.F., Paras, J., Rafiee, M.A., et al.: Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011) Bartolucci, S.F., Paras, J., Rafiee, M.A., et al.: Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011)
21.
Zurück zum Zitat Bastwros, M., Kim, G.-Y., Zhu, C., et al.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. B Eng. 60, 111–118 (2014) Bastwros, M., Kim, G.-Y., Zhu, C., et al.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. B Eng. 60, 111–118 (2014)
22.
Zurück zum Zitat Shin, S.E., Choi, H.J., Shin, J.H., et al.: Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143–151 (2015) Shin, S.E., Choi, H.J., Shin, J.H., et al.: Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143–151 (2015)
23.
Zurück zum Zitat Yi, C., Chen, X., Gou, F., et al.: Direct measurements of the mechanical strength of carbon nanotube-Aluminum interfaces. Carbon 125, 93–102 (2017) Yi, C., Chen, X., Gou, F., et al.: Direct measurements of the mechanical strength of carbon nanotube-Aluminum interfaces. Carbon 125, 93–102 (2017)
24.
Zurück zum Zitat Yi, C., Bagchi, S., Dmuchowski, C.M., et al.: Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon 132, 548–555 (2018) Yi, C., Bagchi, S., Dmuchowski, C.M., et al.: Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon 132, 548–555 (2018)
25.
Zurück zum Zitat Rezaei, R.: Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites. Comput. Mater. Sci. 151, 181–188 (2018) Rezaei, R.: Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites. Comput. Mater. Sci. 151, 181–188 (2018)
26.
Zurück zum Zitat Weng, S., Ning, H., Fu, T., et al.: Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci. Rep. 8, 3089 (2018) Weng, S., Ning, H., Fu, T., et al.: Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci. Rep. 8, 3089 (2018)
27.
Zurück zum Zitat Liu, X., Wang, F., Wang, W., et al.: Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon 107, 680–688 (2016) Liu, X., Wang, F., Wang, W., et al.: Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon 107, 680–688 (2016)
28.
Zurück zum Zitat Zhang, H., Li, X., Su, J., et al.: Modulation of columnar crystals of magnetron sputtered Ti thin films. Thin Solid Films 689, 137512 (2019) Zhang, H., Li, X., Su, J., et al.: Modulation of columnar crystals of magnetron sputtered Ti thin films. Thin Solid Films 689, 137512 (2019)
29.
Zurück zum Zitat Geetha, M., Singh, A.K., Asokamani, R., et al.: Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 54, 397–425 (2009) Geetha, M., Singh, A.K., Asokamani, R., et al.: Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 54, 397–425 (2009)
30.
Zurück zum Zitat Kuzumaki, T., Ujiie, O., Ichinose, H., et al.: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2, 416–418 (2000) Kuzumaki, T., Ujiie, O., Ichinose, H., et al.: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2, 416–418 (2000)
31.
Zurück zum Zitat Fonseca, A.F., Liang, T., Zhang, D., et al.: Graphene–titanium interfaces from molecular dynamics simulations. ACS Appl. Mater. Interfaces 9, 33288–33297 (2017) Fonseca, A.F., Liang, T., Zhang, D., et al.: Graphene–titanium interfaces from molecular dynamics simulations. ACS Appl. Mater. Interfaces 9, 33288–33297 (2017)
32.
Zurück zum Zitat Fonseca, A.F., Liang, T., Zhang, D., et al.: Titanium-carbide formation at defective curved graphene-titanium interfaces. MRS Adv. 3, 457–462 (2018) Fonseca, A.F., Liang, T., Zhang, D., et al.: Titanium-carbide formation at defective curved graphene-titanium interfaces. MRS Adv. 3, 457–462 (2018)
33.
Zurück zum Zitat Khomyakov, P.A., Giovannetti, G., Rusu, P.C., et al.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009) Khomyakov, P.A., Giovannetti, G., Rusu, P.C., et al.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009)
34.
Zurück zum Zitat Chen, L., Luo, J., Wang, Q., et al.: First-principles study of cohesion strength and stability of titanium–carbon interfaces using vdW interaction. J. Phys. Condens. Matter 32, 145001 (2020) Chen, L., Luo, J., Wang, Q., et al.: First-principles study of cohesion strength and stability of titanium–carbon interfaces using vdW interaction. J. Phys. Condens. Matter 32, 145001 (2020)
35.
Zurück zum Zitat Ackland, G.J.: Theoretical study of titanium surfaces and defects with a new many-body potential. Philos. Mag. A 66, 917–932 (1992) Ackland, G.J.: Theoretical study of titanium surfaces and defects with a new many-body potential. Philos. Mag. A 66, 917–932 (1992)
36.
Zurück zum Zitat Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000) Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)
37.
Zurück zum Zitat Bridier, F., Villechaise, P., Mendez, J.: Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 53, 555–567 (2005) Bridier, F., Villechaise, P., Mendez, J.: Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 53, 555–567 (2005)
38.
Zurück zum Zitat Pei, Q.-X., Zhang, Y.-W., Shenoy, V.B.: Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21, 115709 (2010) Pei, Q.-X., Zhang, Y.-W., Shenoy, V.B.: Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21, 115709 (2010)
39.
Zurück zum Zitat Shenderova, O.A., Brenner, D.W., Omeltchenko, A., et al.: Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61, 3877–3888 (2000) Shenderova, O.A., Brenner, D.W., Omeltchenko, A., et al.: Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61, 3877–3888 (2000)
40.
Zurück zum Zitat Zhao, H., Aluru, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010) Zhao, H., Aluru, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010)
41.
Zurück zum Zitat Duan, K., Li, L., Hu, Y., et al.: Interface mechanical properties of graphene reinforced copper nanocomposites. Mater. Res. Express. 4, 115020 (2017) Duan, K., Li, L., Hu, Y., et al.: Interface mechanical properties of graphene reinforced copper nanocomposites. Mater. Res. Express. 4, 115020 (2017)
42.
Zurück zum Zitat Piątek, A., Nowak, R., Gburski, Z.: A titanium-decorated fullerene cluster—a molecular dynamics simulation. In: Perspectives of Nanoscience and Nanotechnology, Trans Tech Publications Ltd. pp. 109–116 (2008) Piątek, A., Nowak, R., Gburski, Z.: A titanium-decorated fullerene cluster—a molecular dynamics simulation. In: Perspectives of Nanoscience and Nanotechnology, Trans Tech Publications Ltd. pp. 109–116 (2008)
43.
Zurück zum Zitat Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)MATH Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)MATH
44.
Zurück zum Zitat Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010) Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)
45.
Zurück zum Zitat Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985) Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)
46.
Zurück zum Zitat Hoover, W.G.: Constant-pressure equations of motion. Phys. Rev. A 34, 2499–2500 (1986) Hoover, W.G.: Constant-pressure equations of motion. Phys. Rev. A 34, 2499–2500 (1986)
47.
Zurück zum Zitat Memarian, F., Fereidoon, A., Darvish Ganji, M.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015) Memarian, F., Fereidoon, A., Darvish Ganji, M.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)
48.
Zurück zum Zitat Zhang, J.Y., Zhang, X., Liu, G., et al.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scripta Mater. 63, 101–104 (2010) Zhang, J.Y., Zhang, X., Liu, G., et al.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scripta Mater. 63, 101–104 (2010)
49.
Zurück zum Zitat Duan, K., Zhu, F., Tang, K., et al.: Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016) Duan, K., Zhu, F., Tang, K., et al.: Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016)
Metadaten
Titel
Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites
verfasst von
Wanhong Tang
Jie Zhang
Jianyang Wu
Jinyou Shao
Peng Ding
Guozhen Hou
Xiaoming Chen
Publikationsdatum
17.06.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 4/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00968-x

Weitere Artikel der Ausgabe 4/2020

Acta Mechanica Sinica 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.