Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 4/2021

17.02.2021 | Original Research Article

Mechanical Properties of Intercritically Annealed X80 Line Pipe Steels

verfasst von: Madhumanti Mandal, Warren Poole, Matthias Militzer, Laurie Collins

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microalloyed low-carbon steels are used for line pipe applications as they combine high strength and acceptable fracture toughness with good weldability. During multi-pass welding, the strength and impact toughness of the material in the heat-affected zone (HAZ) is potentially degraded, in particular the regions where the thermal fields from multi-pass welds overlap (for example: the intercritically reheated coarse grain heat-affected zone, ICCGHAZ). Using a Gleeble thermomechanical simulator, bulk microstructures were produced that are representative for the ICCGHAZ for two high-strength X80 line pipe steels. Here, the first thermal cycle produces a bainitic microstructure that is characteristic of the coarse grain heat-affected zone (CGHAZ) and the second cycle involves intercritical annealing of this region to form microstructures representative of the ICCGHAZ. The effect of the intercritical austenite fraction and the resulting martensite–austenite (M/A) constituents on the tensile properties and the ductile-brittle transition temperature (DBTT) has been quantified for two steels with different carbon contents, i.e., 0.063 and 0.028 wt. pct. Detailed fractography studies have been conducted to evaluate the fracture mechanisms with respect to the microstructural features. Upon intercritical annealing (relevant to ICCGHAZ), the ductile–brittle transition temperature was above room temperature when a nearly continuous necklace of M/A formed on the prior austenite grain boundaries (for M/A ≈ 10 pct). Finally, the role of carbon content on the yield strength and plasticity of martensite has been considered for the tensile fracture behavior and ductile–brittle transition temperature. It is proposed that as the average carbon content of the M/A decreases (both due to (i) a decrease in the bulk carbon content of the steel and (ii) an increase in the volume fraction of austenite formed during intercritical annealing), martensite plasticity was possible which reduced nucleation of voids or cracks at the M/A–bainite interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Schemmann, C. Stallybrass, J. Schröder, A. Liessem, and S. Zaefferer: in Proceedings of the 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–7. L. Schemmann, C. Stallybrass, J. Schröder, A. Liessem, and S. Zaefferer: in Proceedings of the 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–7.
2.
Zurück zum Zitat L.E. Collins, D. Bai, F. Hamad, and X. Chen: in The Seventeenth International Offshore and Polar Engineering Conference, 2007. L.E. Collins, D. Bai, F. Hamad, and X. Chen: in The Seventeenth International Offshore and Polar Engineering Conference, 2007.
3.
Zurück zum Zitat 3 B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi: Acta Mater., 2015, vol. 97, pp. 380–91.CrossRef 3 B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi: Acta Mater., 2015, vol. 97, pp. 380–91.CrossRef
4.
Zurück zum Zitat 4 A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.CrossRef 4 A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.CrossRef
5.
Zurück zum Zitat 5 M. Mohammadijoo, S. Kenny, L. Collins, H. Henein, and D.G. Ivey: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2247–59.CrossRef 5 M. Mohammadijoo, S. Kenny, L. Collins, H. Henein, and D.G. Ivey: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2247–59.CrossRef
6.
Zurück zum Zitat 6 Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.CrossRef 6 Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.CrossRef
7.
Zurück zum Zitat J.A. Gianetto, F. Fazeli, Y. Chen, and T. Smith: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–11. J.A. Gianetto, F. Fazeli, Y. Chen, and T. Smith: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–11.
8.
Zurück zum Zitat 8 X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A, 2017, vol. 704, pp. 448–58.CrossRef 8 X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A, 2017, vol. 704, pp. 448–58.CrossRef
9.
Zurück zum Zitat 9 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.CrossRef 9 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.CrossRef
10.
Zurück zum Zitat N. Romualdi, M. Militzer, W. Poole, L. Collins, and R. Lazor: in Proceedings of the 2020 13th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2020, pp. 1–10. N. Romualdi, M. Militzer, W. Poole, L. Collins, and R. Lazor: in Proceedings of the 2020 13th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2020, pp. 1–10.
11.
Zurück zum Zitat 11 T. Garcin, M. Militzer, W.J. Poole, and L. Collins: Mater. Sci. Technol., 2016, vol. 0836, pp. 1–14. 11 T. Garcin, M. Militzer, W.J. Poole, and L. Collins: Mater. Sci. Technol., 2016, vol. 0836, pp. 1–14.
12.
Zurück zum Zitat T. Garcin, K. Ueda, and M. Militzer: Metall. Mater. Trans. A, vol. 48, pp. 796–808.CrossRef T. Garcin, K. Ueda, and M. Militzer: Metall. Mater. Trans. A, vol. 48, pp. 796–808.CrossRef
13.
Zurück zum Zitat 13 J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363–75.CrossRef 13 J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3363–75.CrossRef
14.
Zurück zum Zitat 14 M. Bellavoine, M. Dumont, M. Dehmas, A. Stark, N. Schell, J. Drillet, V. Hébert, and P. Maugis: Mater. Charact., 2019, vol. 154, pp. 20–30.CrossRef 14 M. Bellavoine, M. Dumont, M. Dehmas, A. Stark, N. Schell, J. Drillet, V. Hébert, and P. Maugis: Mater. Charact., 2019, vol. 154, pp. 20–30.CrossRef
15.
Zurück zum Zitat 15 S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1992, vol. 23, pp. 2803–16.CrossRef 15 S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1992, vol. 23, pp. 2803–16.CrossRef
16.
Zurück zum Zitat 16 N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich: Mater. Sci. Eng. A, 2016, vol. 662, pp. 481–91.CrossRef 16 N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich: Mater. Sci. Eng. A, 2016, vol. 662, pp. 481–91.CrossRef
17.
Zurück zum Zitat 17 J.L.M. Andia, L.F.G. de Souza, and I.S. Bott: Mater. Sci. Forum, 2014, vol. 783–786, pp. 657–62.CrossRef 17 J.L.M. Andia, L.F.G. de Souza, and I.S. Bott: Mater. Sci. Forum, 2014, vol. 783–786, pp. 657–62.CrossRef
18.
Zurück zum Zitat 18 C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–73.CrossRef 18 C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–73.CrossRef
19.
Zurück zum Zitat 19 C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.CrossRef 19 C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.CrossRef
20.
Zurück zum Zitat 20 Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker: ISIJ Int., 2001, vol. 41, pp. 46–55.CrossRef 20 Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker: ISIJ Int., 2001, vol. 41, pp. 46–55.CrossRef
21.
Zurück zum Zitat 21 E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, and J.M. Orain: Mater. Sci. Eng. A, 2004, vol. 385, pp. 352–8.CrossRef 21 E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, and J.M. Orain: Mater. Sci. Eng. A, 2004, vol. 385, pp. 352–8.CrossRef
22.
Zurück zum Zitat 22 X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra, and J. Sun: Mater. Charact., 2018, vol. 138, pp. 107–12.CrossRef 22 X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra, and J. Sun: Mater. Charact., 2018, vol. 138, pp. 107–12.CrossRef
23.
Zurück zum Zitat 23 X. Li, X. Ma, S. V. Subramanian, R.D.K. Misra, and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1–11. 23 X. Li, X. Ma, S. V. Subramanian, R.D.K. Misra, and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1–11.
24.
Zurück zum Zitat 24 P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Metall. Mater. Trans. A, 2014, vol. 45, pp. 384–94.CrossRef 24 P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Metall. Mater. Trans. A, 2014, vol. 45, pp. 384–94.CrossRef
25.
Zurück zum Zitat 25 N. Huda, Y. Wang, L. Li, and A.P. Gerlich: Mater. Sci. Eng. A, 2019, vol. 765, p. 138301.CrossRef 25 N. Huda, Y. Wang, L. Li, and A.P. Gerlich: Mater. Sci. Eng. A, 2019, vol. 765, p. 138301.CrossRef
26.
Zurück zum Zitat 26 A. Lambert-Perlade, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 168–73.CrossRef 26 A. Lambert-Perlade, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Join., 2000, vol. 5, pp. 168–73.CrossRef
27.
Zurück zum Zitat 27 B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22, pp. 139–49.CrossRef 27 B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22, pp. 139–49.CrossRef
28.
Zurück zum Zitat A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau: Metall. Mater. Trans., 2004, vol. 35, pp. 1039–53.CrossRef A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau: Metall. Mater. Trans., 2004, vol. 35, pp. 1039–53.CrossRef
29.
Zurück zum Zitat 29 N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, and D. Raabe: Int. J. Plast., 2018, vol. 104, pp. 39–53.CrossRef 29 N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, and D. Raabe: Int. J. Plast., 2018, vol. 104, pp. 39–53.CrossRef
30.
Zurück zum Zitat 30 F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, and H. Park: Trans. JWRI, 1994, vol. 23, pp. 231–8. 30 F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, and H. Park: Trans. JWRI, 1994, vol. 23, pp. 231–8.
31.
Zurück zum Zitat 31 L. Li, T. Han, and B. Han: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1254–63.CrossRef 31 L. Li, T. Han, and B. Han: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1254–63.CrossRef
32.
Zurück zum Zitat 32 K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.CrossRef 32 K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.CrossRef
33.
Zurück zum Zitat M. Mandal, W.J. Poole, M. Militzer, T. Garcin, and L. Collins: in 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–8. M. Mandal, W.J. Poole, M. Militzer, T. Garcin, and L. Collins: in 2018 12th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2018, pp. 1–8.
34.
Zurück zum Zitat M. Mandal: Ph.D. Thesis, The University of British Columbia, Vancouver, 2020. M. Mandal: Ph.D. Thesis, The University of British Columbia, Vancouver, 2020.
35.
Zurück zum Zitat M.J. Gaudet: Ph.D. Thesis, The University of British Columbia, Vancouver, 2015. M.J. Gaudet: Ph.D. Thesis, The University of British Columbia, Vancouver, 2015.
36.
Zurück zum Zitat 36 T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569–74.CrossRef 36 T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569–74.CrossRef
37.
38.
Zurück zum Zitat 38 I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H.S. Seung: Bioinformatics, 2017, vol. 33, pp. 2424–6.CrossRef 38 I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H.S. Seung: Bioinformatics, 2017, vol. 33, pp. 2424–6.CrossRef
39.
Zurück zum Zitat 39 Y. Sakai, K. Tamanoi, and N. Ogura: Nucl. Eng. Des., 1989, vol. 115, pp. 31–9.CrossRef 39 Y. Sakai, K. Tamanoi, and N. Ogura: Nucl. Eng. Des., 1989, vol. 115, pp. 31–9.CrossRef
40.
Zurück zum Zitat 40 M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.CrossRef 40 M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.CrossRef
41.
Zurück zum Zitat J.M. Reichert, W.J. Poole, M. Militzer, and L. Collins: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–7. J.M. Reichert, W.J. Poole, M. Militzer, and L. Collins: in Proceedings of the 2014 10th International Pipeline Conference, ASME Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, 2014, pp. 1–7.
42.
Zurück zum Zitat 42 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, pp. 154–64.CrossRef 42 N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, pp. 154–64.CrossRef
43.
Zurück zum Zitat 43 H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.CrossRef 43 H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.CrossRef
44.
Zurück zum Zitat H.K.D.H. Bhadeshia: Bainite in Steels, 3rd edn., Maney Publishing, 2015. H.K.D.H. Bhadeshia: Bainite in Steels, 3rd edn., Maney Publishing, 2015.
45.
Zurück zum Zitat 45 A. Borgenstam, M. Hillert, and J. Ågren: Acta Mater., 2009, vol. 57, pp. 3242–52.CrossRef 45 A. Borgenstam, M. Hillert, and J. Ågren: Acta Mater., 2009, vol. 57, pp. 3242–52.CrossRef
46.
Zurück zum Zitat 46 X. Li, C. Shang, X. Ma, B. Gault, S.V. Subramanian, J. Sun, and R.D.K. Misra: Scr. Mater., 2017, vol. 139, pp. 67–70.CrossRef 46 X. Li, C. Shang, X. Ma, B. Gault, S.V. Subramanian, J. Sun, and R.D.K. Misra: Scr. Mater., 2017, vol. 139, pp. 67–70.CrossRef
47.
Zurück zum Zitat M. De Meyer, D. Vanderschueren, K. De Blauwe, and B.C. De Cooman: in 41st MWSP Conference Proceedings, ISS, Vol XXXVII, 1999, pp. 483–91. M. De Meyer, D. Vanderschueren, K. De Blauwe, and B.C. De Cooman: in 41st MWSP Conference Proceedings, ISS, Vol XXXVII, 1999, pp. 483–91.
48.
Zurück zum Zitat 48 C.P. Scott and J. Drillet: Scr. Mater., 2007, vol. 56, pp. 489–92.CrossRef 48 C.P. Scott and J. Drillet: Scr. Mater., 2007, vol. 56, pp. 489–92.CrossRef
49.
Zurück zum Zitat 49 C.W. Sinclair, W.J. Poole, and Y. Bréchet: Scr. Mater., 2006, vol. 55, pp. 739–42.CrossRef 49 C.W. Sinclair, W.J. Poole, and Y. Bréchet: Scr. Mater., 2006, vol. 55, pp. 739–42.CrossRef
50.
Zurück zum Zitat 50 P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, UK, 1990. 50 P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, UK, 1990.
51.
Zurück zum Zitat 51 M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38, pp. 328–39.CrossRef 51 M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38, pp. 328–39.CrossRef
52.
Zurück zum Zitat 52 M. Mazinani and W.J. Poole: Adv. Mater. Res., 2007, vol. 15–17, pp. 774–9. 52 M. Mazinani and W.J. Poole: Adv. Mater. Res., 2007, vol. 15–17, pp. 774–9.
53.
Zurück zum Zitat 53 S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.CrossRef 53 S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.CrossRef
54.
Zurück zum Zitat 54 A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6, pp. 825–37.CrossRef 54 A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6, pp. 825–37.CrossRef
55.
Zurück zum Zitat 55 F.A. McClintock: Int. J. Fract. Mech., 1968, vol. 4, pp. 101–30.CrossRef 55 F.A. McClintock: Int. J. Fract. Mech., 1968, vol. 4, pp. 101–30.CrossRef
56.
Zurück zum Zitat 56 R. Iricibar, G. Leroy, and J.D. Embury: Met. Sci., 1980, vol. 14, pp. 337–43.CrossRef 56 R. Iricibar, G. Leroy, and J.D. Embury: Met. Sci., 1980, vol. 14, pp. 337–43.CrossRef
57.
Zurück zum Zitat L.M. Brown and J.D. Embury: in Proc. 3rd Int. Conf. Strengths of Metals and Alloys, Inst. of Metals, London, England, 1973, pp. 164–9. L.M. Brown and J.D. Embury: in Proc. 3rd Int. Conf. Strengths of Metals and Alloys, Inst. of Metals, London, England, 1973, pp. 164–9.
58.
Zurück zum Zitat 58 G. Bao, J.W. Hutchinson, and R.M.M. McMeeking: Acta Metall. Mater., 1991, vol. 39, pp. 1871–82.CrossRef 58 G. Bao, J.W. Hutchinson, and R.M.M. McMeeking: Acta Metall. Mater., 1991, vol. 39, pp. 1871–82.CrossRef
59.
Zurück zum Zitat W.C. Leslie: The Physical Metallurgy of Steels, Mc-Graw Hill, 1981. W.C. Leslie: The Physical Metallurgy of Steels, Mc-Graw Hill, 1981.
60.
61.
Zurück zum Zitat 61 G. Krauss: Principles of Heat Treatment of Steels, American Society for Metals, Metals Park, Ohio, 1980. 61 G. Krauss: Principles of Heat Treatment of Steels, American Society for Metals, Metals Park, Ohio, 1980.
62.
Zurück zum Zitat W.A. Backofen: Deformation Processing, Addison-Wesley, 1972. W.A. Backofen: Deformation Processing, Addison-Wesley, 1972.
63.
Zurück zum Zitat 63 N.N. Davidenkov: Dynamic Testing of Metals, ONTI, Moscow, 1936. 63 N.N. Davidenkov: Dynamic Testing of Metals, ONTI, Moscow, 1936.
64.
Zurück zum Zitat 64 E. Orowan: Trans. Inst. Engrs Shipbuild. Scotl., 1945, vol. 89, pp. 165–215. 64 E. Orowan: Trans. Inst. Engrs Shipbuild. Scotl., 1945, vol. 89, pp. 165–215.
65.
Zurück zum Zitat 65 J.F. Knott: Fundamentals of Fracture Mechanics, 1st edn., Butterworth & Co Publishers Ltd., London, 1973. 65 J.F. Knott: Fundamentals of Fracture Mechanics, 1st edn., Butterworth & Co Publishers Ltd., London, 1973.
66.
Zurück zum Zitat M.A. Meyers and K.K. Chawla: Mechanical Behaviour of Materials, 2nd edn., Cambridge University Press, Cambridge , 2009. M.A. Meyers and K.K. Chawla: Mechanical Behaviour of Materials, 2nd edn., Cambridge University Press, Cambridge , 2009.
67.
Zurück zum Zitat S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I. Riemsdijk, and R. Mayer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1350–8.CrossRef S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I. Riemsdijk, and R. Mayer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1350–8.CrossRef
68.
Zurück zum Zitat 68 R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.CrossRef 68 R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.CrossRef
69.
Zurück zum Zitat 69 T. Jia and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 614–21.CrossRef 69 T. Jia and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 614–21.CrossRef
Metadaten
Titel
Mechanical Properties of Intercritically Annealed X80 Line Pipe Steels
verfasst von
Madhumanti Mandal
Warren Poole
Matthias Militzer
Laurie Collins
Publikationsdatum
17.02.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 4/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06152-5

Weitere Artikel der Ausgabe 4/2021

Metallurgical and Materials Transactions A 4/2021 Zur Ausgabe

Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

High-Throughput Synthesis and Characterization of a Combinatorial Materials Library in Bulk Alloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.