Skip to main content
Erschienen in:
Buchtitelbild

2012 | OriginalPaper | Buchkapitel

1. Mechanics and Modeling of Chip Formation in Machining of MMC

verfasst von : Yung C. Shin, Chinmaya Dandekar

Erschienen in: Machining of Metal Matrix Composites

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal matrix composites (MMCs) offer high strength-to-weight ratio, high stiffness and good damage resistance over a wide range of operating conditions, making them an attractive option in replacing conventional materials for many engineering applications. Typically the metal matrix materials of MMCs are aluminum alloys, titanium alloys, copper alloys and magnesium alloys, while the reinforcement materials are silicon carbide, aluminum oxide, boron carbide, graphite etc. in the form of fibers, whiskers and particles. This chapter covers the mechanics of chip formation during machining of MMCs and various modeling techniques. Especially, modeling techniques dealing with cutting force, chip morphology, temperature and subsurface damage are covered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.
11.
Zurück zum Zitat Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Tech 23:658–665. doi:10.1007/s00170-003-1624-z CrossRef Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Tech 23:658–665. doi:10.​1007/​s00170-003-1624-z CrossRef
15.
33.
Zurück zum Zitat Komanduri R (1997) Machining of fiber-reinforced composites. Mach Sci Technol 1:113–152CrossRef Komanduri R (1997) Machining of fiber-reinforced composites. Mach Sci Technol 1:113–152CrossRef
34.
Zurück zum Zitat Varadarajan YS, Vijayaraghavan L, Krishnamurthy R (2002) The machinability characteristics of aluminosilicate fiber reinforced Al alloy composite. Mater Manuf Process 17:811–824. doi:10.1081/AMP-120016059 CrossRef Varadarajan YS, Vijayaraghavan L, Krishnamurthy R (2002) The machinability characteristics of aluminosilicate fiber reinforced Al alloy composite. Mater Manuf Process 17:811–824. doi:10.​1081/​AMP-120016059 CrossRef
35.
Zurück zum Zitat Weinert K, Lange M (2003) Machining of fibre reinforced magnesium. In: Proceedings of the second Osaka international conference on platform science and technology for advanced magnesium alloys 2003, Jan 26, 2003–Jan 30, 2003, Osaka, Japan. Materials science forum. Trans Tech Publications Ltd, pp 823–828 Weinert K, Lange M (2003) Machining of fibre reinforced magnesium. In: Proceedings of the second Osaka international conference on platform science and technology for advanced magnesium alloys 2003, Jan 26, 2003–Jan 30, 2003, Osaka, Japan. Materials science forum. Trans Tech Publications Ltd, pp 823–828
36.
38.
Zurück zum Zitat Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRef Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275CrossRef
39.
Zurück zum Zitat Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Processes 8:76–82CrossRef Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Processes 8:76–82CrossRef
40.
Zurück zum Zitat Yan C, Zhang L (1994) Single-point scratching of 6061 Al alloy reinforced by different ceramic particles. Appl Compos Mater 1:431–447CrossRef Yan C, Zhang L (1994) Single-point scratching of 6061 Al alloy reinforced by different ceramic particles. Appl Compos Mater 1:431–447CrossRef
42.
Zurück zum Zitat Boothroyd G, Knight WA (2005) Fundamentals of machining and machine tools. crc mechanical engineering, 3rd edn. CRC Pr I Llc, Boca Raton, Florida Boothroyd G, Knight WA (2005) Fundamentals of machining and machine tools. crc mechanical engineering, 3rd edn. CRC Pr I Llc, Boca Raton, Florida
44.
Zurück zum Zitat Weiner JH (1955) Shear-plane temperature distribution in orthogonal cutting. T ASME 77(8):1331–1336 Weiner JH (1955) Shear-plane temperature distribution in orthogonal cutting. T ASME 77(8):1331–1336
46.
Zurück zum Zitat Kalpakjian S (1996) Manufacturing processes for engineering materials. Addison-Wesley, Reading, MA Kalpakjian S (1996) Manufacturing processes for engineering materials. Addison-Wesley, Reading, MA
49.
Zurück zum Zitat Hung NP, Yeo SH, Lee KK, Ng KJ (1998) Chip formation in machining particle-reinforced metal matrix composites. Mater Manuf Process 13:85–100CrossRef Hung NP, Yeo SH, Lee KK, Ng KJ (1998) Chip formation in machining particle-reinforced metal matrix composites. Mater Manuf Process 13:85–100CrossRef
50.
Zurück zum Zitat Hung NP, Loh NL, Venkatesh VC (1999) Machining of metal matrix composites. In: Jahanmir S, Ramulu M, Koshy P (eds) Machining of ceramics and composites. Marcel Dekker Inc, New York, pp 295–356 Hung NP, Loh NL, Venkatesh VC (1999) Machining of metal matrix composites. In: Jahanmir S, Ramulu M, Koshy P (eds) Machining of ceramics and composites. Marcel Dekker Inc, New York, pp 295–356
51.
Zurück zum Zitat Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Eng Mater-T ASME 123:315–321. doi:10.1115/1.1356026 CrossRef Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Eng Mater-T ASME 123:315–321. doi:10.​1115/​1.​1356026 CrossRef
55.
Zurück zum Zitat Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of uni-directional glass fiber reinforced plastic (UD-GFRP) composites. Part 1: Effect of geometrical and process parameters. Mach Sci Technol 9:481–501. doi:10.1080/10910340500398167 CrossRef Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of uni-directional glass fiber reinforced plastic (UD-GFRP) composites. Part 1: Effect of geometrical and process parameters. Mach Sci Technol 9:481–501. doi:10.​1080/​1091034050039816​7 CrossRef
56.
Zurück zum Zitat Wang XM, Zhang LC (1999) Machining damage in unidirectional fiber-reinforced plastics. In: Wan J, Scott W, Zhang LC (eds) Abrasive technology—current development and applications. World Scientific, Singapore, pp 429–436 Wang XM, Zhang LC (1999) Machining damage in unidirectional fiber-reinforced plastics. In: Wan J, Scott W, Zhang LC (eds) Abrasive technology—current development and applications. World Scientific, Singapore, pp 429–436
61.
Zurück zum Zitat Soo SL, Aspinwall DK (2007) Developments in modeling of metal cutting processes. In: IMechE, vol. 221, Part L: J Mater Design Appl, pp 197–211 Soo SL, Aspinwall DK (2007) Developments in modeling of metal cutting processes. In: IMechE, vol. 221, Part L: J Mater Design Appl, pp 197–211
62.
Zurück zum Zitat ABAQUS User’s Manual, Version 6.5 (2004) Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI ABAQUS User’s Manual, Version 6.5 (2004) Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI
64.
65.
Zurück zum Zitat Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method. J Mater Process Tech 103(2):267–275. doi:10.1016/s0924-0136(00)00480-5 CrossRef Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method. J Mater Process Tech 103(2):267–275. doi:10.​1016/​s0924-0136(00)00480-5 CrossRef
66.
Zurück zum Zitat Tian Y, Shin YC (2004) Finite element modeling of machining of 1020 steel including the effects of round cutting edge. In: Papers Presented at NAMRC 32, June 1, 2004–June 4, 2004, Charlotte, NC, United states, Transactions of the North American Manufacturing Research Institute of SME. Society of Manufacturing Engineers, pp 111–118 Tian Y, Shin YC (2004) Finite element modeling of machining of 1020 steel including the effects of round cutting edge. In: Papers Presented at NAMRC 32, June 1, 2004–June 4, 2004, Charlotte, NC, United states, Transactions of the North American Manufacturing Research Institute of SME. Society of Manufacturing Engineers, pp 111–118
67.
Zurück zum Zitat Özel T, Zeren E (2005) Finite element method simulation of machining of AISI 1045 Steel with a Round Edge Cutting Tool. In: Proceedings of 8th CIRP international workshop on modeling of machining operations. Chemnitz, Germany Özel T, Zeren E (2005) Finite element method simulation of machining of AISI 1045 Steel with a Round Edge Cutting Tool. In: Proceedings of 8th CIRP international workshop on modeling of machining operations. Chemnitz, Germany
68.
Zurück zum Zitat Ozel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Tech 35:255–267. doi:10.1007/s00170-006-0720-2 CrossRef Ozel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Tech 35:255–267. doi:10.​1007/​s00170-006-0720-2 CrossRef
73.
Zurück zum Zitat Arola D, Sultan MB, Ramulu M (2002) Finite element modeling of edge trimming fiber reinforced plastics. J Manuf Sci E-T ASME 124:32–41CrossRef Arola D, Sultan MB, Ramulu M (2002) Finite element modeling of edge trimming fiber reinforced plastics. J Manuf Sci E-T ASME 124:32–41CrossRef
77.
Zurück zum Zitat Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics. The Hague, the Netherlands, pp 541–547 Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics. The Hague, the Netherlands, pp 541–547
78.
Zurück zum Zitat Norton FH (1929) Creep of steel at high temperature. McGraw-Hill, New York Norton FH (1929) Creep of steel at high temperature. McGraw-Hill, New York
79.
Zurück zum Zitat HOFF NJ (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Q Appl Math 12:49–55 HOFF NJ (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Q Appl Math 12:49–55
81.
83.
Zurück zum Zitat Follansbee PS, Gray GT III (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4 V. Metall Trans A 20A:863–874CrossRef Follansbee PS, Gray GT III (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4 V. Metall Trans A 20A:863–874CrossRef
84.
Zurück zum Zitat Nemat-Nasser S, Guo W-G, Nesterenko VF, Indrakanti SS, Gu Y-B (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4 V alloys: experiments and modeling. Mech Mater 33:425–439. doi:10.1016/S0167-6636(01)00063-1 CrossRef Nemat-Nasser S, Guo W-G, Nesterenko VF, Indrakanti SS, Gu Y-B (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4 V alloys: experiments and modeling. Mech Mater 33:425–439. doi:10.​1016/​S0167-6636(01)00063-1 CrossRef
85.
Zurück zum Zitat Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer-Verlag, Berlin, Heidelberg Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer-Verlag, Berlin, Heidelberg
86.
Zurück zum Zitat Marusich TD, Ortiz M (1995) Simulation of chip formation in high-speed machining. In: Proceedings of the 1995 joint ASME applied mechanics and materials conference, Machining of Advanced Materials, AMD, pp 127–139 Marusich TD, Ortiz M (1995) Simulation of chip formation in high-speed machining. In: Proceedings of the 1995 joint ASME applied mechanics and materials conference, Machining of Advanced Materials, AMD, pp 127–139
88.
Zurück zum Zitat 3M (2004) Nextel™ Ceramic textilestechnical notebook. St. Paul, MN 3M (2004) Nextel™ Ceramic textilestechnical notebook. St. Paul, MN
89.
Zurück zum Zitat Bansal NP (2005) Handbook of ceramic composites. Kluwer Academic Publishers, New YorkCrossRef Bansal NP (2005) Handbook of ceramic composites. Kluwer Academic Publishers, New YorkCrossRef
91.
Zurück zum Zitat Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci E-T ASME 130:0510161–05101612. doi:10.1115/1.2976146 CrossRef Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci E-T ASME 130:0510161–05101612. doi:10.​1115/​1.​2976146 CrossRef
92.
Zurück zum Zitat Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech-T ASME 54:525–531CrossRefMATH Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech-T ASME 54:525–531CrossRefMATH
94.
Zurück zum Zitat Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fracture 74:289–324CrossRef Xu XP, Needleman A (1995) Numerical simulations of dynamic crack growth along an interface. Int J Fracture 74:289–324CrossRef
102.
Zurück zum Zitat Hua J, Shivpuri R (2002) Influence of crack mechanics on the chip segmentation in the machining of Ti-6Al-4 V. In: Proceedings of the 9th ISPE international conference on concurrent engineering, Cranfield, UK, pp 357–365 Hua J, Shivpuri R (2002) Influence of crack mechanics on the chip segmentation in the machining of Ti-6Al-4 V. In: Proceedings of the 9th ISPE international conference on concurrent engineering, Cranfield, UK, pp 357–365
106.
Zurück zum Zitat Reddy PR, Sriramakrishna AA (2002) Analysis of orthogonal cutting of aluminum-based composites. Defence Sci J 52(4):375–382 Reddy PR, Sriramakrishna AA (2002) Analysis of orthogonal cutting of aluminum-based composites. Defence Sci J 52(4):375–382
Metadaten
Titel
Mechanics and Modeling of Chip Formation in Machining of MMC
verfasst von
Yung C. Shin
Chinmaya Dandekar
Copyright-Jahr
2012
Verlag
Springer London
DOI
https://doi.org/10.1007/978-0-85729-938-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.