Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 7/2020

13.04.2020 | Original Paper

Mechanisms of Anisotropy in Salt Rock Upon Microcrack Propagation

verfasst von: Xianda Shen, Chloé Arson, Jihui Ding, Frederick M. Chester, Judith S. Chester

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Salt rock is a polycrystalline material of interest for geostorage because of its low permeability and potential to self-heal by pressure solution at favorable stress and temperature conditions. It is often assumed that microcrack propagation and healing lead to isotropic stiffness changes. The goal of this study is to check this assumption and to gain a fundamental understanding of the mechanisms that control the accumulation of damage and irreversible deformation. Cyclic axial loading tests are performed under a confining pressure of 1 MPa on synthetic salt rock generated by thermal consolidation. The stress–strain curves and the microstructure images taken at key stages of the cycles reveal the formation of a complex system of sliding and wing microcracks, the orientation of which is loading dependent. We interpret the mechanisms that control the coupled evolution of crack families by a discrete wing crack elastoplastic damage (DWCPD) model. Crack propagation is controlled by Mode I and Mode II fracture mechanics criteria. Sliding “main” cracks grow if a cohesive frictional criterion is met, while the wing cracks propagate in tension. Displacement jumps at crack faces are related to the deformation of the rock representative elementary volume (REV). The DWCPD model can capture the nonlinear stress–strain relationship and the degradation of stiffness during the loading cycles. Simulations show that microcracks occur following two stages: (1) wing cracks initiate and main cracks do not propagate; (2) wing cracks and main cracks then propagate simultaneously. Higher friction at the crack faces leads to higher strength. With a larger cohesion, salt rock strength increases, damage development is delayed and exhibits a stick-slip evolution. At higher confinement, the initiation of wing cracks is delayed, which results in an increase of strength. The damage rate is higher in specimens that are damaged prior to compression than in the ones that are not. The proposed DWCPD model can be extended to any polycrystalline semi-brittle material, and can be applied to understand the formation of crack patterns in geostorage facilities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arson C, Gatmiri B (2011) Numerical study of damage in unsaturated geological and engineered barriers. Phys Chem Earth Parts A/B/C 36(17–18):1981–1989CrossRef Arson C, Gatmiri B (2011) Numerical study of damage in unsaturated geological and engineered barriers. Phys Chem Earth Parts A/B/C 36(17–18):1981–1989CrossRef
Zurück zum Zitat Bažant P, Oh B (1986) Efficient numerical integration on the surface of a sphere. ZAMM J Appl Math Mech 66(1):37–49CrossRef Bažant P, Oh B (1986) Efficient numerical integration on the surface of a sphere. ZAMM J Appl Math Mech 66(1):37–49CrossRef
Zurück zum Zitat Bobet A (1998) Fracture coalescence in rock materials: Experimental observations and numerical predictions Bobet A (1998) Fracture coalescence in rock materials: Experimental observations and numerical predictions
Zurück zum Zitat Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef
Zurück zum Zitat Budiansky B, O’connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97CrossRef Budiansky B, O’connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97CrossRef
Zurück zum Zitat Chaboche JL (1981) Continuous damage mechanics–a tool to describe phenomena before crack initiation. Nucl Eng Des 64(2):233–247CrossRef Chaboche JL (1981) Continuous damage mechanics–a tool to describe phenomena before crack initiation. Nucl Eng Des 64(2):233–247CrossRef
Zurück zum Zitat Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375CrossRef Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375CrossRef
Zurück zum Zitat Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19(1):23–45CrossRef Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19(1):23–45CrossRef
Zurück zum Zitat Cicekli U, Voyiadjis GZ, Al-Rub RKA (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10–11):1874–1900CrossRef Cicekli U, Voyiadjis GZ, Al-Rub RKA (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10–11):1874–1900CrossRef
Zurück zum Zitat Cosenza P, Ghoreychi M, Bazargan-Sabet B, De Marsily G (1999) In situ rock salt permeability measurement for long term safety assessment of storage. Int J Rock Mech Min Sci 36(4):509–526CrossRef Cosenza P, Ghoreychi M, Bazargan-Sabet B, De Marsily G (1999) In situ rock salt permeability measurement for long term safety assessment of storage. Int J Rock Mech Min Sci 36(4):509–526CrossRef
Zurück zum Zitat Ding J (2019) Grain boundary processes, anelasticity, and test of the effective stress law for semibrittle deformation of synthetic salt-rocks. PhD thesis, Texas A&M University Ding J (2019) Grain boundary processes, anelasticity, and test of the effective stress law for semibrittle deformation of synthetic salt-rocks. PhD thesis, Texas A&M University
Zurück zum Zitat Ding J, Chester FM, Chester JS, Zhu C, Arson C (2016) Mechanical behavior and microstructure development in consolidation of nominally dry granular salt. In: 5th symposium of the American Rock Mechanics Association Ding J, Chester FM, Chester JS, Zhu C, Arson C (2016) Mechanical behavior and microstructure development in consolidation of nominally dry granular salt. In: 5th symposium of the American Rock Mechanics Association
Zurück zum Zitat Ding J, Chester FM, Chester JS, Xianda S, Arson C (2017) Microcrack network development in salt-rock during cyclic loading at low confining pressure. Am Rock Mech Assoc Ding J, Chester FM, Chester JS, Xianda S, Arson C (2017) Microcrack network development in salt-rock during cyclic loading at low confining pressure. Am Rock Mech Assoc
Zurück zum Zitat Dyskin A, Salganik R (1987) Model of dilatancy of brittle materials with cracks under compression. Mech Solids 22(6):165–173 Dyskin A, Salganik R (1987) Model of dilatancy of brittle materials with cracks under compression. Mech Solids 22(6):165–173
Zurück zum Zitat Gambarotta L, Lagomarsino S (1993) A microcrack damage model for brittle materials. Int J Solids Struct 30(2):177–198CrossRef Gambarotta L, Lagomarsino S (1993) A microcrack damage model for brittle materials. Int J Solids Struct 30(2):177–198CrossRef
Zurück zum Zitat Germanovich L, Salganik R, Dyskin A, Lee K (1994) Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Appl Geophys 143(1–3):117–149CrossRef Germanovich L, Salganik R, Dyskin A, Lee K (1994) Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Appl Geophys 143(1–3):117–149CrossRef
Zurück zum Zitat Griffith A (1924) The theory of rupture. In: First Int. Cong. Appl. Mech, pp 55–63 Griffith A (1924) The theory of rupture. In: First Int. Cong. Appl. Mech, pp 55–63
Zurück zum Zitat Halm D, Dragon A (1996) A model of anisotropic damage by mesocrack growth; unilateral effect. Int J Damage Mech 5(4):384–402CrossRef Halm D, Dragon A (1996) A model of anisotropic damage by mesocrack growth; unilateral effect. Int J Damage Mech 5(4):384–402CrossRef
Zurück zum Zitat Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4(3):179–285CrossRef Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4(3):179–285CrossRef
Zurück zum Zitat Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6(4):333–363CrossRef Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6(4):333–363CrossRef
Zurück zum Zitat Hoek E, Bieniawski Z, et al. (1966) Fracture propagation mechanism in hard rock. In: 1st ISRM Congress, international society for rock mechanics Hoek E, Bieniawski Z, et al. (1966) Fracture propagation mechanism in hard rock. In: 1st ISRM Congress, international society for rock mechanics
Zurück zum Zitat Jin W, Arson C (2017a) Discrete equivalent wing crack based damage model for brittle solids. Int J Solids Struct 110:279–293CrossRef Jin W, Arson C (2017a) Discrete equivalent wing crack based damage model for brittle solids. Int J Solids Struct 110:279–293CrossRef
Zurück zum Zitat Kachanov ML (1982) A microcrack model of rock inelasticity. Part I: Frictional sliding on microcracks. Mech Mater 1(1):19–27CrossRef Kachanov ML (1982) A microcrack model of rock inelasticity. Part I: Frictional sliding on microcracks. Mech Mater 1(1):19–27CrossRef
Zurück zum Zitat Krajcinovic D, Fanella D (1986) A micromechanical damage model for concrete. Eng Fract Mech 25(5–6):585–596CrossRef Krajcinovic D, Fanella D (1986) A micromechanical damage model for concrete. Eng Fract Mech 25(5–6):585–596CrossRef
Zurück zum Zitat Kwon S, Wilson JW (1999) Deformation mechanism of the underground excavations at the wipp site. Rock Mech Rock Eng 32(2):101–122CrossRef Kwon S, Wilson JW (1999) Deformation mechanism of the underground excavations at the wipp site. Rock Mech Rock Eng 32(2):101–122CrossRef
Zurück zum Zitat Lehner F, Kachanov M (1996) On modelling of ‘winged” cracks forming under compression. Int J Fract 77(4):R69–R75CrossRef Lehner F, Kachanov M (1996) On modelling of ‘winged” cracks forming under compression. Int J Fract 77(4):R69–R75CrossRef
Zurück zum Zitat Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin
Zurück zum Zitat Pensée V, Kondo D, Dormieux L (2002) Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech 128(8):889–897CrossRef Pensée V, Kondo D, Dormieux L (2002) Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech 128(8):889–897CrossRef
Zurück zum Zitat Salari M, Saeb S, Willam K, Patchet S, Carrasco R (2004) A coupled elastoplastic damage model for geomaterials. Comput Methods Appl Mech Eng 193(27–29):2625–2643CrossRef Salari M, Saeb S, Willam K, Patchet S, Carrasco R (2004) A coupled elastoplastic damage model for geomaterials. Comput Methods Appl Mech Eng 193(27–29):2625–2643CrossRef
Zurück zum Zitat Scholtès L, Donzé FV (2012) Modelling progressive failure in fractured rock masses using a 3d discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef Scholtès L, Donzé FV (2012) Modelling progressive failure in fractured rock masses using a 3d discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef
Zurück zum Zitat Simo J, Ju J (1987) Strain-and stress-based continuum damage models formulation—i. Int J Solids Struct 23(7):821–840CrossRef Simo J, Ju J (1987) Strain-and stress-based continuum damage models formulation—i. Int J Solids Struct 23(7):821–840CrossRef
Zurück zum Zitat Spiers C, Urai J, Lister G, Boland J, Zwart H (1986) The influence of fluid-rock interaction on the rheology of salt rock, 1st edn. Commission of the European Communities, Luxembourg Spiers C, Urai J, Lister G, Boland J, Zwart H (1986) The influence of fluid-rock interaction on the rheology of salt rock, 1st edn. Commission of the European Communities, Luxembourg
Zurück zum Zitat Van Eekelen H (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4(1):89–101CrossRef Van Eekelen H (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4(1):89–101CrossRef
Zurück zum Zitat Yuan S, Harrison J (2006) A review of the state of the art in modelling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks. Int J Rock Mech Min Sci 43(7):1001–1022CrossRef Yuan S, Harrison J (2006) A review of the state of the art in modelling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks. Int J Rock Mech Min Sci 43(7):1001–1022CrossRef
Zurück zum Zitat Zhu C, Arson C (2015) A model of damage and healing coupling halite thermo-mechanical behavior to microstructure evolution. Geotech Geol Eng 33(2):389–410CrossRef Zhu C, Arson C (2015) A model of damage and healing coupling halite thermo-mechanical behavior to microstructure evolution. Geotech Geol Eng 33(2):389–410CrossRef
Metadaten
Titel
Mechanisms of Anisotropy in Salt Rock Upon Microcrack Propagation
verfasst von
Xianda Shen
Chloé Arson
Jihui Ding
Frederick M. Chester
Judith S. Chester
Publikationsdatum
13.04.2020
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 7/2020
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-020-02096-1

Weitere Artikel der Ausgabe 7/2020

Rock Mechanics and Rock Engineering 7/2020 Zur Ausgabe