Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Membrane Modification

verfasst von : Kailash Chandra Khulbe, Takeshi Matsuura

Erschienen in: Nanotechnology in Membrane Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrophilization by treating the membrane surface with water soluble solvent (acids, alcohols, and mixtures of acids, alcohols, and water) is one of the surface modification techniques. Heating and coating are also used to modify the membrane surface.
In chemical treatment, the polymeric membrane surface is modified through covalent bonding. Among many such approaches, grafting to and grafting from are two distinct surface modification approaches used to modify membranes with responsive polymers. The grafting-to technique is based on the attachment of end-functionalized responsive materials to the membrane surface, whereas grafting-from involves a polymer chain grown from initiator sites on the membrane surface through a surface-initiated polymerization process. The membrane surface is activated by high energy radiation, followed by the grafting of hydrophilic modifiers. In this way, the membrane bulk is not significantly affected, but the membrane surface properties can be improved. LBL is also the most common method to modify the membrane surface. It can be conducted by intercalation of positive- and negative-charged polyelectrolytes on the external surface of a porous support.
Membrane surface modification using responsive nanomaterials is a promising technique to overcome the limitations of existing membranes. Depending upon the mode of application, a wide variety of foreign materials has been incorporated into the dope solution for improving the functional properties of membranes. These materials include metal or metal oxide nanoparticles, zeolites, clay nanoparticles, carbon nanotubes and metal organic frameworks (MOFs). The surface of nanofibers fabricated via electrospinning can also be modified by the methods described above.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khulbe KC, Feng C, Matsuura T (2010) The art of surface modification of synthetic polymeric membranes. J Appl Polym Sci 115(2):55–895CrossRef Khulbe KC, Feng C, Matsuura T (2010) The art of surface modification of synthetic polymeric membranes. J Appl Polym Sci 115(2):55–895CrossRef
2.
Zurück zum Zitat Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD (2017) Surface modification of water purification membranes. Agnew Chem Int Ed 56:4662–4711CrossRef Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD (2017) Surface modification of water purification membranes. Agnew Chem Int Ed 56:4662–4711CrossRef
3.
Zurück zum Zitat Sun W, Liu J, Chu H, Dong B (2013) Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes (Basel) 3(3):226–241CrossRef Sun W, Liu J, Chu H, Dong B (2013) Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes (Basel) 3(3):226–241CrossRef
5.
Zurück zum Zitat Khulbe KC, Matsuura T (2020) The advances of electrospun nanofibers in membrane technology. JMSR 6:251–208 Khulbe KC, Matsuura T (2020) The advances of electrospun nanofibers in membrane technology. JMSR 6:251–208
6.
Zurück zum Zitat Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471CrossRef Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471CrossRef
7.
Zurück zum Zitat Alenazi NA, Hussein MA, Alamry KL, Asiri AM (2017) Modified polyether-sulfone membrane: a mini review. Design Monomers Polymers 20(1):532–546CrossRef Alenazi NA, Hussein MA, Alamry KL, Asiri AM (2017) Modified polyether-sulfone membrane: a mini review. Design Monomers Polymers 20(1):532–546CrossRef
8.
Zurück zum Zitat Dorraji MS, Vatanpour V, (2016) Organic–inorganic composite membrane preparation and characterization for biorefining. In: Figoli A, Cassano A, Basile A (eds) Membrane technologies for biorefining, Woodhead Publishing, Sawston. pp 85–102CrossRef Dorraji MS, Vatanpour V, (2016) Organic–inorganic composite membrane preparation and characterization for biorefining. In: Figoli A, Cassano A, Basile A (eds) Membrane technologies for biorefining, Woodhead Publishing, Sawston. pp 85–102CrossRef
9.
Zurück zum Zitat Yu LY, Shen HM, Xu ZL (2009) PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by sol–gel method and blending method. J Appl Polym Sci 113:1763–1772 Yu LY, Shen HM, Xu ZL (2009) PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by sol–gel method and blending method. J Appl Polym Sci 113:1763–1772
10.
Zurück zum Zitat Kundu N, Lee HK, Deshwal BR (2019) Surface modification of polymeric flat sheet membranes by adding oligomeric fluoroalcohol. J Polym Eng 39(2):70–177CrossRef Kundu N, Lee HK, Deshwal BR (2019) Surface modification of polymeric flat sheet membranes by adding oligomeric fluoroalcohol. J Polym Eng 39(2):70–177CrossRef
11.
Zurück zum Zitat Otitoju TA, Ahmad AL, Ooi BS (2018) Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv 8:22710–22728CrossRef Otitoju TA, Ahmad AL, Ooi BS (2018) Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv 8:22710–22728CrossRef
12.
Zurück zum Zitat Sagitha P, Reshmi CR, Sundaran SP, Sujith A (2018) Recent advances in post-modification strategies of polymeric electrospun membranes. Eur Polym J 105:227–249CrossRef Sagitha P, Reshmi CR, Sundaran SP, Sujith A (2018) Recent advances in post-modification strategies of polymeric electrospun membranes. Eur Polym J 105:227–249CrossRef
13.
Zurück zum Zitat Viswanathan P, Themistou E, Ngamkham K, Reilly GC, Armes SP, Battaglia G (2015) Controlling surface topology and functionality of electrospun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion. Biomacromolecules 16:66–75CrossRef Viswanathan P, Themistou E, Ngamkham K, Reilly GC, Armes SP, Battaglia G (2015) Controlling surface topology and functionality of electrospun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion. Biomacromolecules 16:66–75CrossRef
15.
Zurück zum Zitat Zsigmondy R, Bachmann W (1922) Filter and method of producing same. US 1,421,341 Zsigmondy R, Bachmann W (1922) Filter and method of producing same. US 1,421,341
16.
Zurück zum Zitat Loeb S, Sourirajan S (1962) Seawater demineralisation by means of an osmotic membrane. Adv Chem Ser 38:117CrossRef Loeb S, Sourirajan S (1962) Seawater demineralisation by means of an osmotic membrane. Adv Chem Ser 38:117CrossRef
17.
Zurück zum Zitat Kusuki Y, Yoshinaga T, Shimazaki H (1992) Aromatic polyimide double layered hollow filamentary membrane and process for producing same. US 5,141,642 Kusuki Y, Yoshinaga T, Shimazaki H (1992) Aromatic polyimide double layered hollow filamentary membrane and process for producing same. US 5,141,642
18.
Zurück zum Zitat Hoehn H (1974) Treatment of membranes of selected polyimides. US 3,822,202 Hoehn H (1974) Treatment of membranes of selected polyimides. US 3,822,202
19.
Zurück zum Zitat Zhang L, Liu L, Pan F, Wang D, Pan Z (2012) Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane. J Eng Fibers Fabrics 7(3):7–16 Zhang L, Liu L, Pan F, Wang D, Pan Z (2012) Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane. J Eng Fibers Fabrics 7(3):7–16
20.
Zurück zum Zitat Fujioka T, Nghiem LD (2013) Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance. Water Sci Technol Water Supply 13(6):1553–1559CrossRef Fujioka T, Nghiem LD (2013) Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance. Water Sci Technol Water Supply 13(6):1553–1559CrossRef
21.
Zurück zum Zitat Wang Z, Crandall C, Sahadevan R, Menkhaus TJ, Fong H (2017) Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 114:64–72CrossRef Wang Z, Crandall C, Sahadevan R, Menkhaus TJ, Fong H (2017) Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 114:64–72CrossRef
22.
Zurück zum Zitat Ma Z, Kotaki M, Ramakrishna S (2006) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 271:179–187 Ma Z, Kotaki M, Ramakrishna S (2006) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 271:179–187
23.
Zurück zum Zitat Le NL, Wang Y, Chung TS (2012) Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimidemembranes for ethanol dehydration via pervaporation. J Membr Sci 415–416:109–121CrossRef Le NL, Wang Y, Chung TS (2012) Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimidemembranes for ethanol dehydration via pervaporation. J Membr Sci 415–416:109–121CrossRef
24.
Zurück zum Zitat Kusworo T, Aryanti N, Nurmalasari E, Utomo DP (2019) Surface modification and performance enhancement of polyethersulfone (pes) membrane using combination of ultra violet irradiation and thermal annealing for produced water treatment. Proceedings of 2nd international conference on chemical process and product engineering (ICCPPE) 2019 AIP Conf. Proc. 2197, 050012-1–050012-10. https://doi.org/10.1063/1.5140924 Kusworo T, Aryanti N, Nurmalasari E, Utomo DP (2019) Surface modification and performance enhancement of polyethersulfone (pes) membrane using combination of ultra violet irradiation and thermal annealing for produced water treatment. Proceedings of 2nd international conference on chemical process and product engineering (ICCPPE) 2019 AIP Conf. Proc. 2197, 050012-1–050012-10. https://​doi.​org/​10.​1063/​1.​5140924
25.
Zurück zum Zitat Li L, Hashaikeh R, Arafat HA (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Membr Sci 436:57–67CrossRef Li L, Hashaikeh R, Arafat HA (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Membr Sci 436:57–67CrossRef
26.
Zurück zum Zitat Shintani T, Matsuyama H, Kurata N (2009) Effect of heat treatment on performance of chlorine-resistant polyamide reverse osmosis membranes. Desalin 247(1–3):370–377CrossRef Shintani T, Matsuyama H, Kurata N (2009) Effect of heat treatment on performance of chlorine-resistant polyamide reverse osmosis membranes. Desalin 247(1–3):370–377CrossRef
27.
Zurück zum Zitat Zaidi SJ, Mauritz KA, Hassan MK (2018) Functional polymers (part of the polymers and polymeric composites: a reference series book series (POPOC)), pp 1–26 Zaidi SJ, Mauritz KA, Hassan MK (2018) Functional polymers (part of the polymers and polymeric composites: a reference series book series (POPOC)), pp 1–26
28.
Zurück zum Zitat Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG, Mendez SL (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158CrossRef Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG, Mendez SL (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158CrossRef
29.
Zurück zum Zitat Yao C, Li X, Neoh KG, Shi Z, Kang ET (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci 320:259–267CrossRef Yao C, Li X, Neoh KG, Shi Z, Kang ET (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci 320:259–267CrossRef
30.
Zurück zum Zitat Zander NE, Orlicki JA, Rawlett AM, Beebe TP (2012) Quantification of protein incorporated into electrospun polycaprolactone tissue engineering surface. ACS Appl Mater Interfaces 4:2074–2081 Zander NE, Orlicki JA, Rawlett AM, Beebe TP (2012) Quantification of protein incorporated into electrospun polycaprolactone tissue engineering surface. ACS Appl Mater Interfaces 4:2074–2081
31.
Zurück zum Zitat Sawawi M, Wang TY, Nisbet DR, Simon GP (2013) Scission of electrospun polymer fibres by ultrasonication. Polymer 54:4237–4252CrossRef Sawawi M, Wang TY, Nisbet DR, Simon GP (2013) Scission of electrospun polymer fibres by ultrasonication. Polymer 54:4237–4252CrossRef
33.
Zurück zum Zitat Pinnau I, Freeman BD (1999) Chapter 1. Formation and modification of polymeric membranes: overview. American Chemical Society, Washington Pinnau I, Freeman BD (1999) Chapter 1. Formation and modification of polymeric membranes: overview. American Chemical Society, Washington
34.
Zurück zum Zitat Upadhyaya L, Qian X, Wickramasinghe SR (2018) Chemical modification of membrane surface—overview. Curr Opin Chem Eng 20:13–18CrossRef Upadhyaya L, Qian X, Wickramasinghe SR (2018) Chemical modification of membrane surface—overview. Curr Opin Chem Eng 20:13–18CrossRef
35.
Zurück zum Zitat Ayyavoo J, Nguyen TPN, Jun BM, Kim IC, Kwon YN (2016) Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids Surf A Physicochem Eng Asp 506:190–201CrossRef Ayyavoo J, Nguyen TPN, Jun BM, Kim IC, Kwon YN (2016) Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids Surf A Physicochem Eng Asp 506:190–201CrossRef
36.
Zurück zum Zitat Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814CrossRef Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814CrossRef
37.
Zurück zum Zitat Filippova O, Karpov DA, Gradoboev AV, Sokhoreva VV, Pichugin VF (2016) Influence of low-temperature plasma and γ radiationon on the surface properties of PET track membranes. Inor Metals Appl Res 7(5):664–672 Filippova O, Karpov DA, Gradoboev AV, Sokhoreva VV, Pichugin VF (2016) Influence of low-temperature plasma and γ radiationon on the surface properties of PET track membranes. Inor Metals Appl Res 7(5):664–672
38.
Zurück zum Zitat Kaur S, Ma Z, Gopal R, Singh G, Ramakrishna S, Matsuura T (2007) Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidenefluoride) nanofiber membrane. Langmuir 23(26):13085–13092CrossRef Kaur S, Ma Z, Gopal R, Singh G, Ramakrishna S, Matsuura T (2007) Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidenefluoride) nanofiber membrane. Langmuir 23(26):13085–13092CrossRef
39.
Zurück zum Zitat Cho E, Kim C, Park JY, Hwang CH, Kim JH, Kim YA, Endo M, Chang DR, Kook JK (2013) Surface modification of electrospun polyvinylidene fluoride nanofiber membrane by plasma treatment for protein detection. J Nanosci Nanotechnol 13(1):674–677CrossRef Cho E, Kim C, Park JY, Hwang CH, Kim JH, Kim YA, Endo M, Chang DR, Kook JK (2013) Surface modification of electrospun polyvinylidene fluoride nanofiber membrane by plasma treatment for protein detection. J Nanosci Nanotechnol 13(1):674–677CrossRef
40.
Zurück zum Zitat Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci 319:23–28CrossRef Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci 319:23–28CrossRef
43.
Zurück zum Zitat Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(ii)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28(5):1721–1723CrossRef Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(ii)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28(5):1721–1723CrossRef
44.
Zurück zum Zitat Wang JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117(20):5614–5615CrossRef Wang JS, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117(20):5614–5615CrossRef
45.
Zurück zum Zitat Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299CrossRef Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299CrossRef
46.
Zurück zum Zitat Matyjaszewski K (2012) Atom transfer radical polymerization (atrp): current status and future perspectives. Macromolecules 45(10):4015–4039CrossRef Matyjaszewski K (2012) Atom transfer radical polymerization (atrp): current status and future perspectives. Macromolecules 45(10):4015–4039CrossRef
47.
Zurück zum Zitat Guo F, Jankova K, Schulte L, Vigild ME, Ndoni S (2010) Surface modification of nanoporous by atom transfer radical polymerization or click chemistry. Langmuir 26(3):2008–2013CrossRef Guo F, Jankova K, Schulte L, Vigild ME, Ndoni S (2010) Surface modification of nanoporous by atom transfer radical polymerization or click chemistry. Langmuir 26(3):2008–2013CrossRef
48.
Zurück zum Zitat Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc 123(31):7497–7505CrossRef Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc 123(31):7497–7505CrossRef
49.
Zurück zum Zitat Wang J, Wang T, Li L, Wu P, Pan K, Cao B (2014) Functionalization of polyacrylonitrile nanofiber using ATRP method for boric acid removal from aqueous solution. Water Process Eng 3:98–104CrossRef Wang J, Wang T, Li L, Wu P, Pan K, Cao B (2014) Functionalization of polyacrylonitrile nanofiber using ATRP method for boric acid removal from aqueous solution. Water Process Eng 3:98–104CrossRef
50.
Zurück zum Zitat Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–220CrossRef Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–220CrossRef
51.
Zurück zum Zitat Dong Y, Yu P, Sun Q, Lu Y, Tan Z, Yu Z (2018) Grafting of MIPs from PVDF membranes via reversible addition-fragmentation chain transfer polymerization for selective removal of p-hydroxybenzoic acid. Chem Res Chin Univ 34:1051–1057CrossRef Dong Y, Yu P, Sun Q, Lu Y, Tan Z, Yu Z (2018) Grafting of MIPs from PVDF membranes via reversible addition-fragmentation chain transfer polymerization for selective removal of p-hydroxybenzoic acid. Chem Res Chin Univ 34:1051–1057CrossRef
52.
Zurück zum Zitat Wu XM, Wang LL, Wang Y, Gu JS, Yu HY (2012) Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J Membr Sci 421–422:60–68CrossRef Wu XM, Wang LL, Wang Y, Gu JS, Yu HY (2012) Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J Membr Sci 421–422:60–68CrossRef
53.
Zurück zum Zitat Herrera MU, Ichii T, Murase K, Sugimura H (2013) Photochemical grafting of methyl groups on a Si(111) surface using a grignard reagent. J Colloid Interf Sci 411:145–151CrossRef Herrera MU, Ichii T, Murase K, Sugimura H (2013) Photochemical grafting of methyl groups on a Si(111) surface using a grignard reagent. J Colloid Interf Sci 411:145–151CrossRef
54.
Zurück zum Zitat Zhang J, Yuan Y, Shen J, Lin S (2003) Synthesis and caracterization of chitosan grafted poly(N, N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV) ion. Eur Polym J 39:847–850CrossRef Zhang J, Yuan Y, Shen J, Lin S (2003) Synthesis and caracterization of chitosan grafted poly(N, N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV) ion. Eur Polym J 39:847–850CrossRef
55.
Zurück zum Zitat Chua KN, Chai C, Lee PC, Ramakrishna S, Leong KW, Mao HK (2007) Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Exp Hematol 35(5):771–781CrossRef Chua KN, Chai C, Lee PC, Ramakrishna S, Leong KW, Mao HK (2007) Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Exp Hematol 35(5):771–781CrossRef
56.
Zurück zum Zitat Chen S, Hao Y, Cui W, Chang J, Zhou Y (2013) Biodegradable electrospun PLLA/chitosan membrane as guided tissue regen-eration membrane for treating periodontitis. J Mater Sci 48:6567–6577CrossRef Chen S, Hao Y, Cui W, Chang J, Zhou Y (2013) Biodegradable electrospun PLLA/chitosan membrane as guided tissue regen-eration membrane for treating periodontitis. J Mater Sci 48:6567–6577CrossRef
57.
Zurück zum Zitat Chen SH, Chen CH, Shalumon KT, Chen JP (2014) Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. Int J Nanomed 9(1):4079–4092CrossRef Chen SH, Chen CH, Shalumon KT, Chen JP (2014) Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. Int J Nanomed 9(1):4079–4092CrossRef
58.
Zurück zum Zitat Lu PP, Xu ZL, Yang H, Wei YM (2012) Processing–structure–property correlations of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning from polymer–nanoparticle suspensions. ACS Appl Mater Interfaces 4:1716–1172CrossRef Lu PP, Xu ZL, Yang H, Wei YM (2012) Processing–structure–property correlations of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning from polymer–nanoparticle suspensions. ACS Appl Mater Interfaces 4:1716–1172CrossRef
59.
Zurück zum Zitat Jin SY, Kim MH, Jeong YG, Yoon I, Park WH (2017) Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers. Mater Des 124:69–77CrossRef Jin SY, Kim MH, Jeong YG, Yoon I, Park WH (2017) Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers. Mater Des 124:69–77CrossRef
60.
Zurück zum Zitat Mei S, Xiao C, Hu X, Shu W (2011) Hydrolysis modification of PVC/PAN/SiO2 composite hollow fiber membrane. Desalin 280(1–3):378–383 Mei S, Xiao C, Hu X, Shu W (2011) Hydrolysis modification of PVC/PAN/SiO2 composite hollow fiber membrane. Desalin 280(1–3):378–383
61.
Zurück zum Zitat Razzaz A, Ghorban S, Hosayni L, Irani M, Alibadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58:333–343 Razzaz A, Ghorban S, Hosayni L, Irani M, Alibadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58:333–343
62.
Zurück zum Zitat Nejad AG, Unnithan AR, Sasikala ARK, Samarikhalaj M, Thomas RG, Jeong YY, Nasseri S, Murugesan P, Wu D, Park CH, Kim CS (2015) Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces 7:12176–12183CrossRef Nejad AG, Unnithan AR, Sasikala ARK, Samarikhalaj M, Thomas RG, Jeong YY, Nasseri S, Murugesan P, Wu D, Park CH, Kim CS (2015) Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces 7:12176–12183CrossRef
63.
Zurück zum Zitat Ma W, Samal SK, Liu Z, Xiong R, Smedt SC, Bhushan B, Zhang Q, Huang C (2017) Dual pH- and ammonia-vapor-responsive electrospun nanofibrous membranes for oil-water separations. J Membr Sci 537:128–139CrossRef Ma W, Samal SK, Liu Z, Xiong R, Smedt SC, Bhushan B, Zhang Q, Huang C (2017) Dual pH- and ammonia-vapor-responsive electrospun nanofibrous membranes for oil-water separations. J Membr Sci 537:128–139CrossRef
64.
Zurück zum Zitat Amarjargal A, Tijing LD, Shon HK, Park CH, Kim CS (2014) Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: flexible and high efficiency substrates for surface enhanced Raman scattering. Appl Surf Sci 308:396–401CrossRef Amarjargal A, Tijing LD, Shon HK, Park CH, Kim CS (2014) Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: flexible and high efficiency substrates for surface enhanced Raman scattering. Appl Surf Sci 308:396–401CrossRef
65.
Zurück zum Zitat Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390CrossRef Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390CrossRef
66.
Zurück zum Zitat Zhou R, Liu W, Yao X, Leong YW, Lu X (2015) Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. J Mater Chem A 3:16040–16049 Zhou R, Liu W, Yao X, Leong YW, Lu X (2015) Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. J Mater Chem A 3:16040–16049
67.
Zurück zum Zitat Zhang X, Ping M, Wu Z, Tang CY, Wang Z (2020) Microfiltration membranes modified by silver-decorated biomimetic silica nanopollens for mitigating biofouling: synergetic effects of nanopollens and silver nanoparticles. J Membr Sci 597:117773CrossRef Zhang X, Ping M, Wu Z, Tang CY, Wang Z (2020) Microfiltration membranes modified by silver-decorated biomimetic silica nanopollens for mitigating biofouling: synergetic effects of nanopollens and silver nanoparticles. J Membr Sci 597:117773CrossRef
68.
Zurück zum Zitat Moghimifar V, Raisi A, Aroujalian A (2014) Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J Membr Sci 461:69–80 Moghimifar V, Raisi A, Aroujalian A (2014) Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J Membr Sci 461:69–80
69.
Zurück zum Zitat Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:6065–6075CrossRef Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30:6065–6075CrossRef
70.
Zurück zum Zitat Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 133:2583–2591CrossRef Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 133:2583–2591CrossRef
71.
Zurück zum Zitat Vijayan V, Uthaman S, Park IK (2018) Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer the ragnostics. Polymers (Basel) 10:983CrossRef Vijayan V, Uthaman S, Park IK (2018) Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer the ragnostics. Polymers (Basel) 10:983CrossRef
72.
Zurück zum Zitat Peng S, Ouyang B, Men Y, Du Y, Cao Y, Xie R, Pang Z, Shen S, Yang W (2020) Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 231:119680CrossRef Peng S, Ouyang B, Men Y, Du Y, Cao Y, Xie R, Pang Z, Shen S, Yang W (2020) Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 231:119680CrossRef
74.
Zurück zum Zitat Morales-Torres S, Silva TLS, Pastrana-Martínez LM, Brandão ATSC, Figueiredo JL, Silva AMT (2014) Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation. Phys Chem Chem Phys 16:12237–12250 Morales-Torres S, Silva TLS, Pastrana-Martínez LM, Brandão ATSC, Figueiredo JL, Silva AMT (2014) Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation. Phys Chem Chem Phys 16:12237–12250
75.
Zurück zum Zitat Fonouni M, Yegani R, Tavakkoli A, Mollazadeh S (2016) Investigating the effect of various oxidizing agents on the surface functionalization of microporous polypropylene membranes. J Text Polym 4(2):92–100 Fonouni M, Yegani R, Tavakkoli A, Mollazadeh S (2016) Investigating the effect of various oxidizing agents on the surface functionalization of microporous polypropylene membranes. J Text Polym 4(2):92–100
76.
Zurück zum Zitat van Wagner EM, Sagle AC, Sharma MM, La YH, Freeman BD (2011) Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Membr Sci 367(1–2):273–287CrossRef van Wagner EM, Sagle AC, Sharma MM, La YH, Freeman BD (2011) Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Membr Sci 367(1–2):273–287CrossRef
77.
Zurück zum Zitat Ouyang G, Hussain A, Li J, Li D (2015) Remarkable permeability enhancement of polyethersulfone (PES) ultrafiltration membrane by blending cobalt oxide/graphene oxide nanocomposites. RSC Adv 5:70448–70460CrossRef Ouyang G, Hussain A, Li J, Li D (2015) Remarkable permeability enhancement of polyethersulfone (PES) ultrafiltration membrane by blending cobalt oxide/graphene oxide nanocomposites. RSC Adv 5:70448–70460CrossRef
78.
Zurück zum Zitat Xie W, Li J, Sun F, Dong W (2020) Ultrasonication favors TiO2 nano-particles dispersion in PVDF ultrafiltration membrane to effectively enhance membrane hydrophilicity and anti-fouling capability. Environ Sci Pollut Res Int 27(9):9503–9519CrossRef Xie W, Li J, Sun F, Dong W (2020) Ultrasonication favors TiO2 nano-particles dispersion in PVDF ultrafiltration membrane to effectively enhance membrane hydrophilicity and anti-fouling capability. Environ Sci Pollut Res Int 27(9):9503–9519CrossRef
79.
Zurück zum Zitat Gao Y, Hu M, Mi B (2014) Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J Membr Sci 455:349–356 Gao Y, Hu M, Mi B (2014) Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J Membr Sci 455:349–356
80.
Zurück zum Zitat Ju J, Wang T, Wang Q (2015) Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 481:151–157CrossRef Ju J, Wang T, Wang Q (2015) Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 481:151–157CrossRef
81.
Zurück zum Zitat Wu L, Sun J, Tong F (2014) Surface modification of a PVDF membrane by crosslinked collagen. RSC Adv 4(109):63989–63996CrossRef Wu L, Sun J, Tong F (2014) Surface modification of a PVDF membrane by crosslinked collagen. RSC Adv 4(109):63989–63996CrossRef
82.
Zurück zum Zitat Shumskaya A, Kaniukov E, Yakimchuk D, Plisko T, Burts K, Bildyukevich A, Nikolaevich L, Kozlovskiy A, Zdorovets M (2019) Modified ion-track membranes for separation of biological objects. Mater Res Express 6(8):0850h3CrossRef Shumskaya A, Kaniukov E, Yakimchuk D, Plisko T, Burts K, Bildyukevich A, Nikolaevich L, Kozlovskiy A, Zdorovets M (2019) Modified ion-track membranes for separation of biological objects. Mater Res Express 6(8):0850h3CrossRef
83.
Zurück zum Zitat Kim YJ, Yu QS, Deng BL (2009) Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J Membr Sci 344:71–81CrossRef Kim YJ, Yu QS, Deng BL (2009) Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J Membr Sci 344:71–81CrossRef
84.
Zurück zum Zitat Gonzales RR, Park MJ, Tijing L, Han DS, Phuntsho S, Shon HK (2018) Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition. Membranes (Basel) 8(3):70CrossRef Gonzales RR, Park MJ, Tijing L, Han DS, Phuntsho S, Shon HK (2018) Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition. Membranes (Basel) 8(3):70CrossRef
85.
Zurück zum Zitat Ngo THA, Nguyen DT, Do KD, Nguyen TTM, Mori S, Tran DT (2016) Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J Sci Adv Mater Devices 1(4):468–475CrossRef Ngo THA, Nguyen DT, Do KD, Nguyen TTM, Mori S, Tran DT (2016) Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J Sci Adv Mater Devices 1(4):468–475CrossRef
86.
Zurück zum Zitat Khan A, Sherazi TA, Khan Y, Li SH, Naqvi SAR, Cui ZL (2018) Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes. J Membr Sci 554:71–82CrossRef Khan A, Sherazi TA, Khan Y, Li SH, Naqvi SAR, Cui ZL (2018) Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes. J Membr Sci 554:71–82CrossRef
87.
Zurück zum Zitat Kusworo TD, Aryanti N, Firdaus MMM, Sukmawati H (2015) Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment. AIP Conf Proc 1699:040014CrossRef Kusworo TD, Aryanti N, Firdaus MMM, Sukmawati H (2015) Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment. AIP Conf Proc 1699:040014CrossRef
88.
Zurück zum Zitat Kusworo TD, Arthatyanti N, Anggita RA, Setyorini TAD, Utomo DP (2017) Surface modification and performance enhancement of polyethersulfone (PES) membrane using combination of ultra violet irradiation and thermal annealing for produced water treatment. J Environ Sci Techno 10:35 Kusworo TD, Arthatyanti N, Anggita RA, Setyorini TAD, Utomo DP (2017) Surface modification and performance enhancement of polyethersulfone (PES) membrane using combination of ultra violet irradiation and thermal annealing for produced water treatment. J Environ Sci Techno 10:35
89.
Zurück zum Zitat Tomer N, Mondal S, Wandera D, Wickramasinghe SR, Husson SM (2009) Modification of nanofiltration membranes by surface-initiated atom transfer radical polymerization for produced water filtration. Sep Sci Technol 44(14):3346–3368CrossRef Tomer N, Mondal S, Wandera D, Wickramasinghe SR, Husson SM (2009) Modification of nanofiltration membranes by surface-initiated atom transfer radical polymerization for produced water filtration. Sep Sci Technol 44(14):3346–3368CrossRef
90.
Zurück zum Zitat Li L, Yan G, Wu J (2009) Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization and their antifouling properties. J Appl Polym Sci 111:1942–1946CrossRef Li L, Yan G, Wu J (2009) Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization and their antifouling properties. J Appl Polym Sci 111:1942–1946CrossRef
91.
Zurück zum Zitat Anuraj N, Bhattacharjee S, Geiger JH, Baker GL, Bruening ML (2012) An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates. J Memb Sci 389:117–125CrossRef Anuraj N, Bhattacharjee S, Geiger JH, Baker GL, Bruening ML (2012) An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates. J Memb Sci 389:117–125CrossRef
92.
Zurück zum Zitat Li D, Wu J, Yang S, Zhang W, Ran F (2017) Hydrophilicity and anti-fouling modification of polyethersulfone membrane by grafting copolymer chains via surface initiated electrochemically mediated atom transfer radical polymerization. New J Chem 41(18):9918–9930CrossRef Li D, Wu J, Yang S, Zhang W, Ran F (2017) Hydrophilicity and anti-fouling modification of polyethersulfone membrane by grafting copolymer chains via surface initiated electrochemically mediated atom transfer radical polymerization. New J Chem 41(18):9918–9930CrossRef
94.
Zurück zum Zitat El-Arnaouty MB, Abdel Ghaffar AM, Eid M, Maysara E, Aboulfotouh ME, Taher NH, Soliman ES (2018) Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. J Radiat Res Appl Sci 11(3):204–216CrossRef El-Arnaouty MB, Abdel Ghaffar AM, Eid M, Maysara E, Aboulfotouh ME, Taher NH, Soliman ES (2018) Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. J Radiat Res Appl Sci 11(3):204–216CrossRef
95.
Zurück zum Zitat Ke X, Drache M, Gohs U, Kunz U, Beuermann S (2018) Preparation of polymer electrolyte membranes via radiation-induced graft copolymerization on poly(ethylene-alt-tetrafluoroethylene) (ETFE) using the crosslinker n,n-methylenebis (acrylamide). Membranes 8:102CrossRef Ke X, Drache M, Gohs U, Kunz U, Beuermann S (2018) Preparation of polymer electrolyte membranes via radiation-induced graft copolymerization on poly(ethylene-alt-tetrafluoroethylene) (ETFE) using the crosslinker n,n-methylenebis (acrylamide). Membranes 8:102CrossRef
96.
Zurück zum Zitat Lv Y, Yu X, Tu ST, Yan J, Dahlquis E (2010) Wetting of polypropylene hollow fiber membrane contactors. J Membr Sci 362(1–2):444–452CrossRef Lv Y, Yu X, Tu ST, Yan J, Dahlquis E (2010) Wetting of polypropylene hollow fiber membrane contactors. J Membr Sci 362(1–2):444–452CrossRef
97.
Zurück zum Zitat Li Y, Wang L, Hu X, Jin P, Song X (2018) Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep Purif Technol 194:222–230CrossRef Li Y, Wang L, Hu X, Jin P, Song X (2018) Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep Purif Technol 194:222–230CrossRef
98.
Zurück zum Zitat Li X, Cai T, Gl A, Chung TS (2017) Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis. J Memb Sci 522:116–123CrossRef Li X, Cai T, Gl A, Chung TS (2017) Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis. J Memb Sci 522:116–123CrossRef
99.
Zurück zum Zitat Li X, Cai T, Chen C, Chung TS (2016) Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater. Water Res 89:50–58CrossRef Li X, Cai T, Chen C, Chung TS (2016) Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater. Water Res 89:50–58CrossRef
100.
Zurück zum Zitat Wang JH, Qing Y, Qing C (2009) Surface electrokinetic behavior of PVDF hollow fiber ultrafiltration membrane modified by low-temperature plasma method. Environ Sci Manag 34:54–57 Wang JH, Qing Y, Qing C (2009) Surface electrokinetic behavior of PVDF hollow fiber ultrafiltration membrane modified by low-temperature plasma method. Environ Sci Manag 34:54–57
101.
Zurück zum Zitat Goh K, Setiawan L, Wei L, Jiang W, Wang R, Chen Y (2013) Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J Membr Sci 446:244–254CrossRef Goh K, Setiawan L, Wei L, Jiang W, Wang R, Chen Y (2013) Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J Membr Sci 446:244–254CrossRef
102.
Zurück zum Zitat Song H, Yu H, Zhu L, Xue L, Wu D, Chen H (2017) Durable hydrophilic surface modification for PTFE hollow fiber membranes. React Funct Polym 114:110–117CrossRef Song H, Yu H, Zhu L, Xue L, Wu D, Chen H (2017) Durable hydrophilic surface modification for PTFE hollow fiber membranes. React Funct Polym 114:110–117CrossRef
103.
Zurück zum Zitat Zheng Z, Wang W, Huang X, Fan W, Li L (2018) Surface modification of polysulfone hollow fiber membrane for extracorporeal membrane oxygenator using low-temperature plasma treatment. Plasma Process Polym 15(1):1700122CrossRef Zheng Z, Wang W, Huang X, Fan W, Li L (2018) Surface modification of polysulfone hollow fiber membrane for extracorporeal membrane oxygenator using low-temperature plasma treatment. Plasma Process Polym 15(1):1700122CrossRef
104.
Zurück zum Zitat Wan P, Bernards M, Deng B (2017) Modification of polysulfone (PSF) hollow fiber membrane (HFM) with Zwitterionic or charged polymers. Ind Eng Chem Res 56(26):7576–7584CrossRef Wan P, Bernards M, Deng B (2017) Modification of polysulfone (PSF) hollow fiber membrane (HFM) with Zwitterionic or charged polymers. Ind Eng Chem Res 56(26):7576–7584CrossRef
105.
Zurück zum Zitat Ifuku S, Suzuki N, Izawa H, Morimoto M, Saimoto H (2014) Surface phthaloylation of chitin nano fiber in a queous media to improve dispersibility in aromatic solvents and give thermo-responsive and ultraviolet protection properties. RSC Adv 4(37):19246–19250CrossRef Ifuku S, Suzuki N, Izawa H, Morimoto M, Saimoto H (2014) Surface phthaloylation of chitin nano fiber in a queous media to improve dispersibility in aromatic solvents and give thermo-responsive and ultraviolet protection properties. RSC Adv 4(37):19246–19250CrossRef
106.
Zurück zum Zitat Almasian A, Fard GC, Gashti MP, Mirjalili M, Shourijeh Z (2016) Surface modification of electrospun PAN nanofibers by amine compounds for adorption of anionic dyes. Desalin Water Treat 57(22):10333–10348CrossRef Almasian A, Fard GC, Gashti MP, Mirjalili M, Shourijeh Z (2016) Surface modification of electrospun PAN nanofibers by amine compounds for adorption of anionic dyes. Desalin Water Treat 57(22):10333–10348CrossRef
107.
Zurück zum Zitat Bao Y, Lai Z, Zhu H, Fong C, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3:8998–9004CrossRef Bao Y, Lai Z, Zhu H, Fong C, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3:8998–9004CrossRef
108.
Zurück zum Zitat Liao Y, Wang R, Fane AG (2013) Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J Membr Sci 440:77–87CrossRef Liao Y, Wang R, Fane AG (2013) Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J Membr Sci 440:77–87CrossRef
109.
Zurück zum Zitat Yalcinkaya F, Yalcinkaya B, Pazourek A, Mullerova J, Stuchlik M, Maryska J (2016) Surface modification of electrospun pvdf/pan nanofibrous layers by low vacuum plasma treatment. Int J Polym Sci 2016:4671658CrossRef Yalcinkaya F, Yalcinkaya B, Pazourek A, Mullerova J, Stuchlik M, Maryska J (2016) Surface modification of electrospun pvdf/pan nanofibrous layers by low vacuum plasma treatment. Int J Polym Sci 2016:4671658CrossRef
110.
Zurück zum Zitat Yalcinkaya F, Siekierka A, Bryjak M (2017) Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv 89:56704CrossRef Yalcinkaya F, Siekierka A, Bryjak M (2017) Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv 89:56704CrossRef
111.
Zurück zum Zitat Zhang L, Shi X, Peng X, Chen BY, Kuang T (2014) Enhanced hydrophobicity of electrospun polyvinylidene fluoride-co-hexafluoropropylene membranes by introducing modified nanosilica, SPE ANTEC ® Anaheim 2017/586. ACS Appl Mater Interfaces 6(18):16035–16048 Zhang L, Shi X, Peng X, Chen BY, Kuang T (2014) Enhanced hydrophobicity of electrospun polyvinylidene fluoride-co-hexafluoropropylene membranes by introducing modified nanosilica, SPE ANTEC ® Anaheim 2017/586. ACS Appl Mater Interfaces 6(18):16035–16048
112.
Zurück zum Zitat Lee CH, Chiang CL, Liu SJ (2013) Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Sep Purif Technol 118:737–743CrossRef Lee CH, Chiang CL, Liu SJ (2013) Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Sep Purif Technol 118:737–743CrossRef
113.
Zurück zum Zitat Yang W, Li R, Fang C, Hao W (2019) Surface modification of polyamide nanofiber membranes by polyurethane to simultaneously improve their mechanical strength and hydrophobicity for breathable and waterproof applications. Prog Org Coat 131:67–72CrossRef Yang W, Li R, Fang C, Hao W (2019) Surface modification of polyamide nanofiber membranes by polyurethane to simultaneously improve their mechanical strength and hydrophobicity for breathable and waterproof applications. Prog Org Coat 131:67–72CrossRef
114.
Zurück zum Zitat Xu Y, Sheng J, Yin X, Yu Z, Ding B (2017) Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J Colloid Interfaces Sci 508:508–516 Xu Y, Sheng J, Yin X, Yu Z, Ding B (2017) Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J Colloid Interfaces Sci 508:508–516
115.
Zurück zum Zitat Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D, Gilbert RJ (2014) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780CrossRef Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D, Gilbert RJ (2014) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780CrossRef
116.
Zurück zum Zitat Uzal N, Ates N, Saki S, Bulbul E, Chen YS (2017) Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Sep Purif Technol 187:118–126 Uzal N, Ates N, Saki S, Bulbul E, Chen YS (2017) Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Sep Purif Technol 187:118–126
117.
Zurück zum Zitat Shen L, Feng S, Li J, Chen J, Li F, Lin H, Yu J (2017) Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance. Sci Rep 7:2721CrossRef Shen L, Feng S, Li J, Chen J, Li F, Lin H, Yu J (2017) Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance. Sci Rep 7:2721CrossRef
118.
Zurück zum Zitat Phan DN, Hasegawa Y, Song KH, Lee H, Kim IS (2018) Adsorption of silver ions from aqueous solution onto thiol modified polyvinyl alcohol nanofibers trends. Textile Eng Fashion Technol 1(5):4 pages Phan DN, Hasegawa Y, Song KH, Lee H, Kim IS (2018) Adsorption of silver ions from aqueous solution onto thiol modified polyvinyl alcohol nanofibers trends. Textile Eng Fashion Technol 1(5):4 pages
119.
Zurück zum Zitat Wang Y, Górecki RP, Stamate E, Norrman K, Aili D, Zuo M, Guo W, Hélix-Nielsen C, Zhang W (2019) Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv 9:278–286CrossRef Wang Y, Górecki RP, Stamate E, Norrman K, Aili D, Zuo M, Guo W, Hélix-Nielsen C, Zhang W (2019) Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv 9:278–286CrossRef
120.
Zurück zum Zitat Liao Y, Loh CH, Wang R, Fane AG (2014) Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Appl Mater Interfaces 6(18):16035–16048CrossRef Liao Y, Loh CH, Wang R, Fane AG (2014) Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Appl Mater Interfaces 6(18):16035–16048CrossRef
121.
Zurück zum Zitat Pereao OK, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik LF (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25:1175–1189CrossRef Pereao OK, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik LF (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25:1175–1189CrossRef
122.
Zurück zum Zitat Xiao S, Luo X, Peng Q, Deb H (2016) Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fibers Polymers 17(9):1428–1437CrossRef Xiao S, Luo X, Peng Q, Deb H (2016) Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fibers Polymers 17(9):1428–1437CrossRef
123.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
124.
Zurück zum Zitat Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397CrossRef Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397CrossRef
125.
Zurück zum Zitat Sadegh H, Shahryari-ghoshekandi R (2015) Functionalization of carbon nanotubes and its application in nanomedicine: a review. Nanomed J 2(4):231–248 Sadegh H, Shahryari-ghoshekandi R (2015) Functionalization of carbon nanotubes and its application in nanomedicine: a review. Nanomed J 2(4):231–248
126.
Zurück zum Zitat Mustafa A, Kusworo TD, Busairi A, Ismail AF, Budiyono (2012) Increasing the performance of PES-CNTs mixed matrix membrane using carbon nanotubes (CNTs) functionalization. Int J Waste Res 2(1):22–24CrossRef Mustafa A, Kusworo TD, Busairi A, Ismail AF, Budiyono (2012) Increasing the performance of PES-CNTs mixed matrix membrane using carbon nanotubes (CNTs) functionalization. Int J Waste Res 2(1):22–24CrossRef
Metadaten
Titel
Membrane Modification
verfasst von
Kailash Chandra Khulbe
Takeshi Matsuura
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64183-2_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.