Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Membrane Preparation

verfasst von : Kailash Chandra Khulbe, Takeshi Matsuura

Erschienen in: Nanotechnology in Membrane Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the materials used for the preparation of synthetic membranes, including also their preparation methods. Synthetic membranes are either ceramic or polymeric. The membranes can be prepared in various shapes such as flat sheet, tubular, hollow fiber, and spiral wound, each with its own special features. Many novel functional nanomaterials are being explored to enhance the performance of membranes.
The nanoparticles can be synthesised by various methods for both research and commercial uses. These are physical, chemical and mechanical. Nanoparticles can be derived from larger molecules or synthesized by ‘bottom-up’ methods that, for example, nucleate and grow particles from fine molecular distributions in liquid or vapour phase. The synthesis method can also include functionalization by conjugation to bioactive molecules.
Electrospun nanofibers have emerged as important fibrous materials for reinforcing or modifying polymer matrices. Nanofibers have gained much interest for use in various biomedical applications over the past few decades due to their unique functional properties such as large surface area and high aspect ratio, which play a vital role in cellular and molecular activities, and their structural similarity to native cellular micro environment. Nowadays nanofibers are being used in industrial scale for the treatment of air and water. Different techniques for the manufacturing nanofibers are presented in this chapter but electrospinning has been shown to be the most effective method.
Carbon nanomaterials (CNMs) have received tremendous attention in the field of novel membrane science and technology. Application of CNMs could improve the membrane separation process. As well, TiO2 nanoparticles are popular as fillers to the polymeric membranes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holister P, Román C, Vas CR, Harper T (2003) Nanoporous materials. Científica White Papers nr. 5: 11 pages Holister P, Román C, Vas CR, Harper T (2003) Nanoporous materials. Científica White Papers nr. 5: 11 pages
2.
Zurück zum Zitat Kargari A, Shirazi MMMA (2014) Water desalination: solar-assisted membrane distillation. In: Capehart BL (ed) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton, pp 1–15 Kargari A, Shirazi MMMA (2014) Water desalination: solar-assisted membrane distillation. In: Capehart BL (ed) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton, pp 1–15
3.
Zurück zum Zitat Taylor G (1969) Electrically driven jets. Proc R Soc Lond A 313:453–475CrossRef Taylor G (1969) Electrically driven jets. Proc R Soc Lond A 313:453–475CrossRef
4.
Zurück zum Zitat Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9(3):232–248CrossRef Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9(3):232–248CrossRef
5.
Zurück zum Zitat Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global. Mater Today 9(3):40–50CrossRef Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global. Mater Today 9(3):40–50CrossRef
6.
Zurück zum Zitat Chen YQ, Zheng XJ, Feng X (2010) The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning. Nanotechnology 21:055708CrossRef Chen YQ, Zheng XJ, Feng X (2010) The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning. Nanotechnology 21:055708CrossRef
7.
Zurück zum Zitat Zhu J, Jia L, Huang R (2017) Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting. J Mater Sci Mater Electron 28:12080–12085CrossRef Zhu J, Jia L, Huang R (2017) Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting. J Mater Sci Mater Electron 28:12080–12085CrossRef
8.
Zurück zum Zitat Faneer KA, Rohani R, Mohammad AW (2016) Polyethersulfone nanofiltration membrane incorporated with silicon dioxide prepared by phase inversion method for xylitol purification. Polym Polym Composites 24(9):803–808CrossRef Faneer KA, Rohani R, Mohammad AW (2016) Polyethersulfone nanofiltration membrane incorporated with silicon dioxide prepared by phase inversion method for xylitol purification. Polym Polym Composites 24(9):803–808CrossRef
9.
Zurück zum Zitat Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94-102 Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94-102
10.
Zurück zum Zitat Wu L, Shamsuzzoha M, Ritchie SMC (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanopart Res 7(4–5):469–447CrossRef Wu L, Shamsuzzoha M, Ritchie SMC (2005) Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J Nanopart Res 7(4–5):469–447CrossRef
11.
Zurück zum Zitat Sun W, Shi J, Chen C, Li N, Xu Z, Li J, Lv H, Qian X, Lhao L (2008) A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv 8:10040–10056CrossRef Sun W, Shi J, Chen C, Li N, Xu Z, Li J, Lv H, Qian X, Lhao L (2008) A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv 8:10040–10056CrossRef
12.
Zurück zum Zitat Zunita M, Makertihartha IGBN, Saputra FA, Syaifi YS, Wenten IG (2018) Metal oxide based antibacterial membrane. IOP Conf Ser Mater Sci Eng 395:012021CrossRef Zunita M, Makertihartha IGBN, Saputra FA, Syaifi YS, Wenten IG (2018) Metal oxide based antibacterial membrane. IOP Conf Ser Mater Sci Eng 395:012021CrossRef
13.
Zurück zum Zitat Pedro XQ, Alvarez JJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):931–3946 Pedro XQ, Alvarez JJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):931–3946
15.
Zurück zum Zitat Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalin 336:97–109CrossRef Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalin 336:97–109CrossRef
16.
Zurück zum Zitat Ribeiro B, Botelho EC, Costa ML, Bande CF (2017) Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros 27(3):247–255CrossRef Ribeiro B, Botelho EC, Costa ML, Bande CF (2017) Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros 27(3):247–255CrossRef
17.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
18.
Zurück zum Zitat Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Inter 3:2869–2877CrossRef Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Inter 3:2869–2877CrossRef
19.
Zurück zum Zitat Al-anzi BSS, Siang OC (2017) Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Adv 7:20981–20994CrossRef Al-anzi BSS, Siang OC (2017) Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment. RSC Adv 7:20981–20994CrossRef
20.
Zurück zum Zitat Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim H, Bae SS, Park J, Yoon J (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18(5):1551–1559CrossRef Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim H, Bae SS, Park J, Yoon J (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18(5):1551–1559CrossRef
21.
Zurück zum Zitat Holt K, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037CrossRef Holt K, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037CrossRef
23.
Zurück zum Zitat Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700CrossRef Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700CrossRef
24.
Zurück zum Zitat Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32CrossRef Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32CrossRef
27.
Zurück zum Zitat Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalin 308:15–33CrossRef Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalin 308:15–33CrossRef
28.
Zurück zum Zitat Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J, Avramescu ML (2014) Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int 21(20):11823–11831CrossRef Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J, Avramescu ML (2014) Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int 21(20):11823–11831CrossRef
29.
Zurück zum Zitat Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918CrossRef Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918CrossRef
30.
Zurück zum Zitat Heo DN, Min KH, Choi GH, Kwon IK, Park K, Lee SC (2014) Chapter 2. Scale-up production of theranostic nanoparticles. Academic Press, pp 457–470 Heo DN, Min KH, Choi GH, Kwon IK, Park K, Lee SC (2014) Chapter 2. Scale-up production of theranostic nanoparticles. Academic Press, pp 457–470
31.
Zurück zum Zitat Muthuraman A, Kaur J (2017) Chapter 6—Antimicrobial nanostructures for neurodegenerative infections: present and future perspectives. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy, Elsevier, pp 139–167. isbn: 978-0-323-46152-8 Muthuraman A, Kaur J (2017) Chapter 6—Antimicrobial nanostructures for neurodegenerative infections: present and future perspectives. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy, Elsevier, pp 139–167. isbn: 978-0-323-46152-8
32.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
33.
34.
Zurück zum Zitat Gopalakrishnan A, Krishnan R, Thangavel S, Venugopal G, Kim SJ (2015) Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J Ind Eng Chem 30:14–19CrossRef Gopalakrishnan A, Krishnan R, Thangavel S, Venugopal G, Kim SJ (2015) Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J Ind Eng Chem 30:14–19CrossRef
35.
Zurück zum Zitat Lingamdinne LP, Koduru JR, Choi YL, Chang YY, Yang JK (2015) Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 165:64–72CrossRef Lingamdinne LP, Koduru JR, Choi YL, Chang YY, Yang JK (2015) Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 165:64–72CrossRef
36.
Zurück zum Zitat Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Sergey S (2018) Outlook for graphene-based desalination membranes. npj Clean Water 1:5CrossRef Boretti A, Al-Zubaidy S, Vaclavikova M, Al-Abri M, Castelletto S, Sergey S (2018) Outlook for graphene-based desalination membranes. npj Clean Water 1:5CrossRef
37.
Zurück zum Zitat Yang K, Chen B, Zhu L (2015) Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci Rep 5:11641CrossRef Yang K, Chen B, Zhu L (2015) Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci Rep 5:11641CrossRef
38.
Zurück zum Zitat Song N, Gao X, Ma Z, Wang X, Wei Y, Gao C (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalin 437:59–72CrossRef Song N, Gao X, Ma Z, Wang X, Wei Y, Gao C (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalin 437:59–72CrossRef
39.
Zurück zum Zitat Zhu X, Yang K, Chen B (2017) Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. Environ Sci Nano 4:2267–2285CrossRef Zhu X, Yang K, Chen B (2017) Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. Environ Sci Nano 4:2267–2285CrossRef
40.
Zurück zum Zitat Ganesh BM, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalin 313:199–207 Ganesh BM, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalin 313:199–207
41.
Zurück zum Zitat Huiliang D, Jingyuan L, Jing Z, Gang S, Xiaoyi L, Yuliang Z (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266CrossRef Huiliang D, Jingyuan L, Jing Z, Gang S, Xiaoyi L, Yuliang Z (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266CrossRef
43.
Zurück zum Zitat Awad FS, Zied KMA, El-Maaty WMA, El-Wakil AM, El-Shall MSY (2020) Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab J Chem 13(1):2659–2670CrossRef Awad FS, Zied KMA, El-Maaty WMA, El-Wakil AM, El-Shall MSY (2020) Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab J Chem 13(1):2659–2670CrossRef
44.
Zurück zum Zitat Zhang L, Li H, Lai X, Su X, Liang T, Zeng X (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef Zhang L, Li H, Lai X, Su X, Liang T, Zeng X (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef
45.
Zurück zum Zitat Ong CS, Al-Anzi BS, Lau WJ (2018) Carbon-based polymer nanocomposites for environmental and energy applications, pp 261–280. isbn: 9780128135747 Ong CS, Al-Anzi BS, Lau WJ (2018) Carbon-based polymer nanocomposites for environmental and energy applications, pp 261–280. isbn: 9780128135747
47.
Zurück zum Zitat Kerr PF (1952) Formation and occurrence of clay minerals. Clay Clay Miner 1:19–32CrossRef Kerr PF (1952) Formation and occurrence of clay minerals. Clay Clay Miner 1:19–32CrossRef
48.
Zurück zum Zitat Vinokurov VA, Stavitskaya AV, Chudakov YA, Ivanov EV, Shrestha LK, Ariga K, Darrat YA, Lvov YM (2017) Formation of metal clusters in halloysite clay nanotubes. Sci Technol Adv Mater 18(1):147–151CrossRef Vinokurov VA, Stavitskaya AV, Chudakov YA, Ivanov EV, Shrestha LK, Ariga K, Darrat YA, Lvov YM (2017) Formation of metal clusters in halloysite clay nanotubes. Sci Technol Adv Mater 18(1):147–151CrossRef
49.
Zurück zum Zitat Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3(2):25–29 Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3(2):25–29
50.
Zurück zum Zitat Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D (2012) Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). J Phys Chem C 116(34):18230–18235CrossRef Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D (2012) Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). J Phys Chem C 116(34):18230–18235CrossRef
51.
Zurück zum Zitat Berahman R, Raiati M, Mazidi MM, Paran SMR (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater Des 104:333–345CrossRef Berahman R, Raiati M, Mazidi MM, Paran SMR (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater Des 104:333–345CrossRef
52.
Zurück zum Zitat Ge L, Lin R, Wang L, Rufford TE, Villacorta B, Liu S, Liu LX, Zhu Z (2017) Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation. Sep Purif Technol 173:63–71CrossRef Ge L, Lin R, Wang L, Rufford TE, Villacorta B, Liu S, Liu LX, Zhu Z (2017) Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation. Sep Purif Technol 173:63–71CrossRef
53.
Zurück zum Zitat Murali RS, Padaki M, Matsuura T, Abdullah MS, Ismail AF (2014) Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep Purif Technol 132:187–119CrossRef Murali RS, Padaki M, Matsuura T, Abdullah MS, Ismail AF (2014) Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep Purif Technol 132:187–119CrossRef
54.
Zurück zum Zitat Mishra G, Mukhopadhyay M (2018) Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: for water treatment. J Indus Eng Chem 63:366–379CrossRef Mishra G, Mukhopadhyay M (2018) Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: for water treatment. J Indus Eng Chem 63:366–379CrossRef
55.
Zurück zum Zitat Duan L, Zhao Q, Liu J, Zhang Y (2015) Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification. Water Res Technol 1(6):874–881CrossRef Duan L, Zhao Q, Liu J, Zhang Y (2015) Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification. Water Res Technol 1(6):874–881CrossRef
56.
Zurück zum Zitat Mishra G, Mukhopadhyay M (2019) TiO2 decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci Rep 9:4345CrossRef Mishra G, Mukhopadhyay M (2019) TiO2 decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci Rep 9:4345CrossRef
58.
Zurück zum Zitat Junaidi MUM, Khoo CP, Leo CP, Ahmad A (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Micropor Mesopor Mater 192:52–59CrossRef Junaidi MUM, Khoo CP, Leo CP, Ahmad A (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Micropor Mesopor Mater 192:52–59CrossRef
59.
Zurück zum Zitat Subhan MA (2020) Antibacterial property of metal oxide-based nanomaterials. Nanotoxicity 2020:283–300CrossRef Subhan MA (2020) Antibacterial property of metal oxide-based nanomaterials. Nanotoxicity 2020:283–300CrossRef
60.
Zurück zum Zitat Pertici V, Martrou G, Gigmes D, Trimaille T (2018) Synthetic polymer-based electrospun fibers: biofunctionalization strategies and recent advances in tissue engineering. Drug delivery and diagnostics. Curr Med Chem 25(20):2385–2400CrossRef Pertici V, Martrou G, Gigmes D, Trimaille T (2018) Synthetic polymer-based electrospun fibers: biofunctionalization strategies and recent advances in tissue engineering. Drug delivery and diagnostics. Curr Med Chem 25(20):2385–2400CrossRef
61.
Zurück zum Zitat Khil MS, Cha DI, Kim HY, Email A, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67(2):675–679CrossRef Khil MS, Cha DI, Kim HY, Email A, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67(2):675–679CrossRef
62.
Zurück zum Zitat Kumbar G, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef Kumbar G, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef
64.
Zurück zum Zitat Krishnaswamy K, Orsat V (2017) Chapter 2: Sustainable delivery systems through green nanotechnology in nano- and microscale drug delivery systems. In: Design and fabrication. Elsevier, pp 17–32 Krishnaswamy K, Orsat V (2017) Chapter 2: Sustainable delivery systems through green nanotechnology in nano- and microscale drug delivery systems. In: Design and fabrication. Elsevier, pp 17–32
66.
Zurück zum Zitat Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharma Sci 1(6):228–234 Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharma Sci 1(6):228–234
67.
Zurück zum Zitat Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219CrossRef Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219CrossRef
69.
Zurück zum Zitat Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRef Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRef
70.
Zurück zum Zitat Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero valent iron nanoparticles. Adv Colloid Interface Sci 120(1–3):4–56 Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero valent iron nanoparticles. Adv Colloid Interface Sci 120(1–3):4–56
71.
Zurück zum Zitat Yuvakumar R, Elango V, Rajendra V, Kannan N (2011) Preparation and characterization of zero valent iron nanoparticles. Digest J Nanomate Biostruct 6(4):1771–1776 Yuvakumar R, Elango V, Rajendra V, Kannan N (2011) Preparation and characterization of zero valent iron nanoparticles. Digest J Nanomate Biostruct 6(4):1771–1776
72.
Zurück zum Zitat Chekli L (2015) Development of methods for the characterisation of engineered nanoparticles used for soil and groundwater remediation. Dissertation, School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney (UTS), New South Wales, Australia Chekli L (2015) Development of methods for the characterisation of engineered nanoparticles used for soil and groundwater remediation. Dissertation, School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney (UTS), New South Wales, Australia
73.
Zurück zum Zitat Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep 6:22069CrossRef Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep 6:22069CrossRef
74.
Zurück zum Zitat Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3:860–883CrossRef Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3:860–883CrossRef
76.
Zurück zum Zitat Wang Y, Foo SW, Chung TS (2009) Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Ind Eng Chem Res 48(9):4474–4483CrossRef Wang Y, Foo SW, Chung TS (2009) Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Ind Eng Chem Res 48(9):4474–4483CrossRef
77.
Zurück zum Zitat Vital V, Sousa JM (2013) Handbook of membrane reactors: fundamental materials science, design and optimisation. isbn-10: 0857094149 Vital V, Sousa JM (2013) Handbook of membrane reactors: fundamental materials science, design and optimisation. isbn-10: 0857094149
78.
Zurück zum Zitat Wiryoatmojo AS (2010) Development of mixed membranes for separation of CO2 from CH4. MSc thesis. Universiti Teknologi Petronas: Malaysia Wiryoatmojo AS (2010) Development of mixed membranes for separation of CO2 from CH4. MSc thesis. Universiti Teknologi Petronas: Malaysia
79.
Zurück zum Zitat Jusoh N, Yeong YF, Chew TL, Lau KK, Shariff AM (2016) Current development and challenges of mixed matrix membranes for CO2/CH4 separation. Sep Purif Rev 45(4):321–344CrossRef Jusoh N, Yeong YF, Chew TL, Lau KK, Shariff AM (2016) Current development and challenges of mixed matrix membranes for CO2/CH4 separation. Sep Purif Rev 45(4):321–344CrossRef
80.
Zurück zum Zitat Miyatake K, Ohama O, Kawara Y, Urano A (2007) Study on analysis method for reaction of silane coupling agent on inorganic materials. SEI Tech Rev 65:21–24 Miyatake K, Ohama O, Kawara Y, Urano A (2007) Study on analysis method for reaction of silane coupling agent on inorganic materials. SEI Tech Rev 65:21–24
81.
Zurück zum Zitat Faucheu J, Gauthier C, Chazeau L, Cavaillé JY, Mellon V, Lami EB (2010) Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: short review and recent advances. Polymer 51:6–17CrossRef Faucheu J, Gauthier C, Chazeau L, Cavaillé JY, Mellon V, Lami EB (2010) Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: short review and recent advances. Polymer 51:6–17CrossRef
82.
Zurück zum Zitat Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. J Membr Sci 37:145–154CrossRef Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. J Membr Sci 37:145–154CrossRef
83.
Zurück zum Zitat Marti AM, Venna SR, Roth EA, Culp JT, Hopkinson DP (2018) Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation materials. ACS Appl Mater Interfaces 10(29):24784–24790CrossRef Marti AM, Venna SR, Roth EA, Culp JT, Hopkinson DP (2018) Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation materials. ACS Appl Mater Interfaces 10(29):24784–24790CrossRef
84.
Zurück zum Zitat Kulprathipanja S (2002) Mixed matrix membrane development. Membr Technol 2002(4):9–12CrossRef Kulprathipanja S (2002) Mixed matrix membrane development. Membr Technol 2002(4):9–12CrossRef
85.
Zurück zum Zitat Vinogradov NE, Kagramanov GG (2016) The development of polymer membranes and modules for air separation. J Phys Conf Ser 751:012038CrossRef Vinogradov NE, Kagramanov GG (2016) The development of polymer membranes and modules for air separation. J Phys Conf Ser 751:012038CrossRef
86.
Zurück zum Zitat Luo L, Wang P, Zhang S, Han G, Chung TS (2014) Novel thin-film composite tri-bore hollow fiber membrane fabrication for forward osmosis. J Membr Sci 461:28–38CrossRef Luo L, Wang P, Zhang S, Han G, Chung TS (2014) Novel thin-film composite tri-bore hollow fiber membrane fabrication for forward osmosis. J Membr Sci 461:28–38CrossRef
87.
Zurück zum Zitat Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S (1993) Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. J Membr Sci 78(3):247–254CrossRef Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S (1993) Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. J Membr Sci 78(3):247–254CrossRef
88.
Zurück zum Zitat Khulbe KC, Matsuura T (2018) Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation. Polymers (Basel) 10(10):1051CrossRef Khulbe KC, Matsuura T (2018) Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation. Polymers (Basel) 10(10):1051CrossRef
89.
Zurück zum Zitat Ni L, Wang J, Zhang Y, Meng J, Jhang Y (2011) The performance improvement of hollow fiber composite reverse osmosis membranes by post-treatments. Desalin Water Treat 34:32–33CrossRef Ni L, Wang J, Zhang Y, Meng J, Jhang Y (2011) The performance improvement of hollow fiber composite reverse osmosis membranes by post-treatments. Desalin Water Treat 34:32–33CrossRef
90.
Zurück zum Zitat Nascimento ML, Araújo ES, Cordeiro ER, de Oliveira AH, de Oliveira HP (2015) A literature investigation about electrospinning and nanofibers: historical trends, current status and future challenges. Recent Pat Nanotechnol 9(2):76–85CrossRef Nascimento ML, Araújo ES, Cordeiro ER, de Oliveira AH, de Oliveira HP (2015) A literature investigation about electrospinning and nanofibers: historical trends, current status and future challenges. Recent Pat Nanotechnol 9(2):76–85CrossRef
91.
Zurück zum Zitat Tucker N, Stanger JJ, Staiger MP, Razzaq HA, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fiber Fabr 7(2):63–73 Tucker N, Stanger JJ, Staiger MP, Razzaq HA, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fiber Fabr 7(2):63–73
92.
Zurück zum Zitat Gilbert W (1600) De magnete, magneticisque corporibus, et de magno magnete tellure Gilbert W (1600) De magnete, magneticisque corporibus, et de magno magnete tellure
93.
Zurück zum Zitat Strut J (1882) On the equilibrium of liquid conducting masses charged with electricity London, Edinburgh, and Dublin. Philos Mag 14(87):184–186CrossRef Strut J (1882) On the equilibrium of liquid conducting masses charged with electricity London, Edinburgh, and Dublin. Philos Mag 14(87):184–186CrossRef
94.
Zurück zum Zitat Boys C (1887) On the production, properties, and some suggested uses of the finest threads. Philos Mag 23(145):489–499CrossRef Boys C (1887) On the production, properties, and some suggested uses of the finest threads. Philos Mag 23(145):489–499CrossRef
95.
Zurück zum Zitat Cooley J (1988) Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite flu Espacenet. GB190006385 (A) Cooley J (1988) Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite flu Espacenet. GB190006385 (A)
96.
Zurück zum Zitat Doshi J, Reneker DH, (1993) Electrospinning process and applications of electropsun fibers. Proceedings of IEEE industry application society 28th annual meeting, Toronto, Canada, October 2−8 Doshi J, Reneker DH, (1993) Electrospinning process and applications of electropsun fibers. Proceedings of IEEE industry application society 28th annual meeting, Toronto, Canada, October 2−8
97.
Zurück zum Zitat Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. ACC Chem Res 50:1976–1987CrossRef Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. ACC Chem Res 50:1976–1987CrossRef
98.
Zurück zum Zitat Pike RD (1996) Superfine microfiber nonwoven web. US5935883 Pike RD (1996) Superfine microfiber nonwoven web. US5935883
99.
Zurück zum Zitat Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes (Basel) 1(3):232–248CrossRef Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes (Basel) 1(3):232–248CrossRef
101.
Zurück zum Zitat Li YJ, Chen F, Nie J, Yang DZ (2012) Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohydr Polym 90(4):1445–1451CrossRef Li YJ, Chen F, Nie J, Yang DZ (2012) Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohydr Polym 90(4):1445–1451CrossRef
102.
Zurück zum Zitat Kim IG, Lee JH, Unnithan AR, Park CH, Kim CS (2015) A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers. J Ind Eng Chem 31:251–256CrossRef Kim IG, Lee JH, Unnithan AR, Park CH, Kim CS (2015) A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers. J Ind Eng Chem 31:251–256CrossRef
103.
Zurück zum Zitat Nuryantini AY, Munir MM, Ekaputra MP, Suciati T, Khairurrijal K (2014) Electrospinning of poly(vinyl alcohol)/chitosan via multi-nozzle spinneret and drum collector. Adv Mater Res 896:41–44CrossRef Nuryantini AY, Munir MM, Ekaputra MP, Suciati T, Khairurrijal K (2014) Electrospinning of poly(vinyl alcohol)/chitosan via multi-nozzle spinneret and drum collector. Adv Mater Res 896:41–44CrossRef
104.
Zurück zum Zitat Sasithorn N, Martinová L (2014) Fabrication of silk nanofibres with needle and roller electrospinning methods. J Nanomater 2014:947315CrossRef Sasithorn N, Martinová L (2014) Fabrication of silk nanofibres with needle and roller electrospinning methods. J Nanomater 2014:947315CrossRef
105.
Zurück zum Zitat Chen RX, Li Y, He JH (2014) Mini-review on bubbfil spinning process for mass-production of nanofibers. Revista Materia 19(4):325–344CrossRef Chen RX, Li Y, He JH (2014) Mini-review on bubbfil spinning process for mass-production of nanofibers. Revista Materia 19(4):325–344CrossRef
106.
Zurück zum Zitat He JH, Kong H, Yang RR, Dou H, Faraz N (2012) Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Therm Sci 16(5):1263–1279CrossRef He JH, Kong H, Yang RR, Dou H, Faraz N (2012) Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Therm Sci 16(5):1263–1279CrossRef
107.
Zurück zum Zitat Li ZB, Liu HY, Dou H (2014) On air blowing direction in the blown bubble-spinning. Revista Materia 19(4):345–349CrossRef Li ZB, Liu HY, Dou H (2014) On air blowing direction in the blown bubble-spinning. Revista Materia 19(4):345–349CrossRef
108.
Zurück zum Zitat Heand JH, Liu Y (2012) Control of bubble size and bubble number in bubble electrospinning. Comput Math Appl 64(5):1033–1035CrossRef Heand JH, Liu Y (2012) Control of bubble size and bubble number in bubble electrospinning. Comput Math Appl 64(5):1033–1035CrossRef
109.
Zurück zum Zitat Alghoraibi I, Alomari S (2018) Different methods for nanofiber design and fabrication. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer, Cham, pp 1–46 Alghoraibi I, Alomari S (2018) Different methods for nanofiber design and fabrication. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer, Cham, pp 1–46
110.
Zurück zum Zitat Lu Y, Li Y, Zhang S, Fu K, Lee H, Zhang X (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49(12):3834–3845CrossRef Lu Y, Li Y, Zhang S, Fu K, Lee H, Zhang X (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49(12):3834–3845CrossRef
111.
Zurück zum Zitat Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang M (2015) High through put and high-yield fabrication of uniaxially-aligned chitosan based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474: Article 10199CrossRef Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang M (2015) High through put and high-yield fabrication of uniaxially-aligned chitosan based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474: Article 10199CrossRef
113.
Zurück zum Zitat Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23:5651–5657CrossRef Brown TD, Dalton PD, Hutmacher DW (2011) Direct writing by way of melt electrospinning. Adv Mater 23:5651–5657CrossRef
114.
Zurück zum Zitat Dalton PD, Klinkhamme K, Salber J, Klee D, Möllere M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690CrossRef Dalton PD, Klinkhamme K, Salber J, Klee D, Möllere M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690CrossRef
115.
Zurück zum Zitat Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833CrossRef Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833CrossRef
116.
Zurück zum Zitat Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water. Adv Mater 23:4270–4273CrossRef Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water. Adv Mater 23:4270–4273CrossRef
117.
Zurück zum Zitat Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed 53:856–860CrossRef Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed 53:856–860CrossRef
118.
Zurück zum Zitat Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3(2):185–190CrossRef Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3(2):185–190CrossRef
119.
Zurück zum Zitat Salamian N, Irani S, Zandi M, Saeed SM, Atyabi SM (2013) Cell attachment studies on electrospun nanofibrous PLGA and freeze-dried porous PLGA. Nano Bulletin 2(1):130103 Salamian N, Irani S, Zandi M, Saeed SM, Atyabi SM (2013) Cell attachment studies on electrospun nanofibrous PLGA and freeze-dried porous PLGA. Nano Bulletin 2(1):130103
120.
Zurück zum Zitat Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y (2017) Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10):2575–2592CrossRef Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y (2017) Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10):2575–2592CrossRef
121.
Zurück zum Zitat Tanaka Y (2015) Ion exchange membranes: fundamentals and applications. Elsevier, Japan, p 47. isbn: 978-0-444-63319-4 Tanaka Y (2015) Ion exchange membranes: fundamentals and applications. Elsevier, Japan, p 47. isbn: 978-0-444-63319-4
122.
Zurück zum Zitat Sata T Membrane processes—preparation and characterization of ion-exchange membranes, UNESCO-EOLSS Sata T Membrane processes—preparation and characterization of ion-exchange membranes, UNESCO-EOLSS
123.
Zurück zum Zitat Alabi A, Al Hajaj A, Cseri L, Szekely G, Budd P, Zou L (2018) Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water 1:10CrossRef Alabi A, Al Hajaj A, Cseri L, Szekely G, Budd P, Zou L (2018) Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water 1:10CrossRef
124.
Zurück zum Zitat Khulbe KC, Matsuura T, Feng C (2015) The art of making polymeric membranes. In: Thakur VK, Thakur MK (eds) Hand book for pharmaceutical technologies (processing and applications). Scrivener Publishing, Beverly, pp 33–66, isbn: 978-1-119-04138-2CrossRef Khulbe KC, Matsuura T, Feng C (2015) The art of making polymeric membranes. In: Thakur VK, Thakur MK (eds) Hand book for pharmaceutical technologies (processing and applications). Scrivener Publishing, Beverly, pp 33–66, isbn: 978-1-119-04138-2CrossRef
125.
Zurück zum Zitat Du Z (2016) Improvement of nafion composite membrane for direct methanol fuel cell: effect of analcime and mordenite addition and fabrication method, Kasetsart University, Bangkok Du Z (2016) Improvement of nafion composite membrane for direct methanol fuel cell: effect of analcime and mordenite addition and fabrication method, Kasetsart University, Bangkok
126.
Zurück zum Zitat Xing D, He G, Hou Z, Ming P, Song S (2013) Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. Int J Hydrog Energy 38:8400–8408CrossRef Xing D, He G, Hou Z, Ming P, Song S (2013) Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. Int J Hydrog Energy 38:8400–8408CrossRef
127.
Zurück zum Zitat Prapainainar P, Maliwan S, Sarakham K, Du Z, Prapainainar C, Holmes SM, Kongkachuichay P (2018) Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. Int J Hydrog Energy 43(31):14675–14690CrossRef Prapainainar P, Maliwan S, Sarakham K, Du Z, Prapainainar C, Holmes SM, Kongkachuichay P (2018) Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. Int J Hydrog Energy 43(31):14675–14690CrossRef
128.
Zurück zum Zitat Dixon DJ, Johnston KP, Bodmeier R (1993) Polymeric materials formed by precipitation with compressed fluid antisolvent. AIChE J 39(1):127–139CrossRef Dixon DJ, Johnston KP, Bodmeier R (1993) Polymeric materials formed by precipitation with compressed fluid antisolvent. AIChE J 39(1):127–139CrossRef
130.
Zurück zum Zitat Sanguanruksa J, Rujiravanit R, Supaphol P, Tokura S (2004) Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polym Test 23(1):91–99CrossRef Sanguanruksa J, Rujiravanit R, Supaphol P, Tokura S (2004) Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polym Test 23(1):91–99CrossRef
131.
Zurück zum Zitat Roy-Chowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3-dialdehydecellulose membranes as a potential biodegradable tissue engineering scaffold. J Biomed Mater Res Part A 76(2):300–309CrossRef Roy-Chowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3-dialdehydecellulose membranes as a potential biodegradable tissue engineering scaffold. J Biomed Mater Res Part A 76(2):300–309CrossRef
132.
Zurück zum Zitat Jung SY, Ko SY, Park JO, Park S (2015) Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method, smart materials and structures. J Intellig Mater Syst Struct 28(11):1514–1523CrossRef Jung SY, Ko SY, Park JO, Park S (2015) Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method, smart materials and structures. J Intellig Mater Syst Struct 28(11):1514–1523CrossRef
133.
Zurück zum Zitat Qiu M, Feng J, Fan Y, Xu N (2009) Pore evolution model of ceramic membrane during con-strained sintering. J Mater Sci 44(3):689–699CrossRef Qiu M, Feng J, Fan Y, Xu N (2009) Pore evolution model of ceramic membrane during con-strained sintering. J Mater Sci 44(3):689–699CrossRef
134.
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef
135.
Zurück zum Zitat Cui Z (2014) Sintering method for ceramic membrane preparation. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin Cui Z (2014) Sintering method for ceramic membrane preparation. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin
136.
Zurück zum Zitat Li L, Gao EZ, Abadikhah H, Wang JW, Hao LY, Xu X, Agathopoulos S (2018) Preparation of a porous, sintered and reaction-bonded Si3N4 (srbsn) planar membrane for filtration of an oil-in-water emulsion with high flux performance. Materials 11:990. 15 pages Li L, Gao EZ, Abadikhah H, Wang JW, Hao LY, Xu X, Agathopoulos S (2018) Preparation of a porous, sintered and reaction-bonded Si3N4 (srbsn) planar membrane for filtration of an oil-in-water emulsion with high flux performance. Materials 11:990. 15 pages
137.
Zurück zum Zitat Lu F, Liu H, Xiao C, Wang X, Chen K, Huang H (2019) Effect of on-line stretching treatment on the structure and performance of polyvinyl chloride hollow fiber membranes. RSC Adv 9:6699–6707CrossRef Lu F, Liu H, Xiao C, Wang X, Chen K, Huang H (2019) Effect of on-line stretching treatment on the structure and performance of polyvinyl chloride hollow fiber membranes. RSC Adv 9:6699–6707CrossRef
138.
Zurück zum Zitat Li N, Xiao C (2009) Preparation and properties of UHMWPE/SiO2 hybrid hollow fibre membranes via thermally induced phase separation-stretching method. Iranian Polymer J 18(6):479–489 Li N, Xiao C (2009) Preparation and properties of UHMWPE/SiO2 hybrid hollow fibre membranes via thermally induced phase separation-stretching method. Iranian Polymer J 18(6):479–489
Metadaten
Titel
Membrane Preparation
verfasst von
Kailash Chandra Khulbe
Takeshi Matsuura
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64183-2_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.