Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2018

22.06.2018 | Original Article

Mesoporous activated carbon produced from coconut shell using a single-step physical activation process

verfasst von: Wen-Tien Tsai, Tasi-Jung Jiang

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the pore properties and textural characterization of resulting activated carbons (ACs) derived from dried coconut shell (DCS) were investigated in duplicate using a single-step physical activation process. Based on the thermochemical properties of DCS analyzed, the process features its carbonization temperature of 500 °C at a constant heating rate of 10 °C/min under nitrogen flow, subsequently switched to the gasification with CO2 gas in the ranges of 700–900 °C (activation temperature) and 0–60 min (holding time) in the same reactor. The results showed that the pore properties (including mesoporosity) of resulting AC products, obtained from nitrogen adsorption-desorption isotherm and true density measurements, were on an increasing trend as activation temperature and holding time increased. These findings were attributable to the severe reactions of the lignocellulose-based char with CO2. According to the maximal Brunauer-Emmet-Teller (BET) surface area (˃ 1100 m2/g) and mesoporosity percentage (˃ 40%), the optimal activation conditions should be performed at 850 °C for a holding time of 60 min, but will result in relatively low yield. Furthermore, the textural structures and elemental compositions of DCS-based ACs were viewed using the scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDS) and elemental analysis, showing consistent results as described above.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li C, Kumar S (2016) Preparation of activated carbon from un-hydrolyzed biomass residue. Biomass Convers Biorefin 6:407–419CrossRef Li C, Kumar S (2016) Preparation of activated carbon from un-hydrolyzed biomass residue. Biomass Convers Biorefin 6:407–419CrossRef
2.
Zurück zum Zitat Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, Amsterdam Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, Amsterdam
3.
Zurück zum Zitat Yahya MA, Al-Qodah Z, Ngah CMZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev 46:218–235CrossRef Yahya MA, Al-Qodah Z, Ngah CMZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev 46:218–235CrossRef
4.
Zurück zum Zitat Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New York Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New York
5.
Zurück zum Zitat Juarez-Galan JM, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F (2009) Synthesis of activated carbon with highly developed “mesoporosity”. Microporous Mesoporous Mater 117:519–521CrossRef Juarez-Galan JM, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F (2009) Synthesis of activated carbon with highly developed “mesoporosity”. Microporous Mesoporous Mater 117:519–521CrossRef
6.
Zurück zum Zitat Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717CrossRef Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717CrossRef
7.
Zurück zum Zitat Hu Z, Srinivasan MP, Ni Y (2000) Preparation of mesoporous high-surface-area activated carbon. Adv Mater 12:62–65CrossRef Hu Z, Srinivasan MP, Ni Y (2000) Preparation of mesoporous high-surface-area activated carbon. Adv Mater 12:62–65CrossRef
8.
Zurück zum Zitat Tan ZL, Xiao HN, Zhang RD, Kaliaguine S (2009) Potential to use mesoporous carbon as catalyst support for hydrodesulfurization. New Carbon Mater 24:333–343CrossRef Tan ZL, Xiao HN, Zhang RD, Kaliaguine S (2009) Potential to use mesoporous carbon as catalyst support for hydrodesulfurization. New Carbon Mater 24:333–343CrossRef
9.
Zurück zum Zitat Galvez ME, Ascaso S, Boyano A, Moliner R, Lazaro MJ (2012) Activated carbons as catalyst support. In: Kwiatkowski JF (ed) Activated carbon: Classifications, properties and applications. Nova, New York, pp 169–203 Galvez ME, Ascaso S, Boyano A, Moliner R, Lazaro MJ (2012) Activated carbons as catalyst support. In: Kwiatkowski JF (ed) Activated carbon: Classifications, properties and applications. Nova, New York, pp 169–203
10.
Zurück zum Zitat Li QZ, Luo XG (2015) Preparation of mesoporous activated carbon supported Ni catalyst for deoxygenation of stearic acid into hydrocarbons. Environ Prog Sustain Energy 34:607–612CrossRef Li QZ, Luo XG (2015) Preparation of mesoporous activated carbon supported Ni catalyst for deoxygenation of stearic acid into hydrocarbons. Environ Prog Sustain Energy 34:607–612CrossRef
11.
Zurück zum Zitat Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang Y (2008) Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem Commun 10:795–797CrossRef Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang Y (2008) Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem Commun 10:795–797CrossRef
12.
Zurück zum Zitat Feng Z, Xue R, Shao X (2010) Highly mesoporous carbonaceous material of activated carbon beads for electric double layer capacitor. Electrochim Acta 55:7334–7340CrossRef Feng Z, Xue R, Shao X (2010) Highly mesoporous carbonaceous material of activated carbon beads for electric double layer capacitor. Electrochim Acta 55:7334–7340CrossRef
13.
Zurück zum Zitat Wang J, Chen M, Wang C, Wang J, Zheng J (2011) Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J Power Sources 196:550–558CrossRef Wang J, Chen M, Wang C, Wang J, Zheng J (2011) Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J Power Sources 196:550–558CrossRef
14.
Zurück zum Zitat Jain A, Aravindan V, Jayaraman S, Kumar PS, Balasubramanian R, Ramakrishna S, Madhavi S, Srinivasan MP (2013) Activated carbons derived from coconut shells as high density cathode material for li-ion capacitors. Sci Rep 3. https://doi.org/10.1038/srep03002 Jain A, Aravindan V, Jayaraman S, Kumar PS, Balasubramanian R, Ramakrishna S, Madhavi S, Srinivasan MP (2013) Activated carbons derived from coconut shells as high density cathode material for li-ion capacitors. Sci Rep 3. https://​doi.​org/​10.​1038/​srep03002
15.
Zurück zum Zitat Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee JY, Srinivasan MP (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61CrossRef Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee JY, Srinivasan MP (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61CrossRef
16.
Zurück zum Zitat Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai SR, Tamon H (2005) Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353CrossRef Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai SR, Tamon H (2005) Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353CrossRef
17.
Zurück zum Zitat Macedo JS, Junior NBC, Almeida LE, Vieira EFS, Cestari AR, Gimenez IF, Carreno NLV, Barreto LS (2006) Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared coir dust. J Colloid Interface Sci 298:515–522CrossRef Macedo JS, Junior NBC, Almeida LE, Vieira EFS, Cestari AR, Gimenez IF, Carreno NLV, Barreto LS (2006) Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared coir dust. J Colloid Interface Sci 298:515–522CrossRef
18.
Zurück zum Zitat Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40CrossRef Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40CrossRef
19.
Zurück zum Zitat Sun Y, Yue Q, Gao B, Wang Y, Gao Y, Li Q (2013) Preparation of highly developed mesoporous activated carbon by H4P2O7 activation and its adsorption behavior for oxytetracycline. Powder Technol 249:54–62CrossRef Sun Y, Yue Q, Gao B, Wang Y, Gao Y, Li Q (2013) Preparation of highly developed mesoporous activated carbon by H4P2O7 activation and its adsorption behavior for oxytetracycline. Powder Technol 249:54–62CrossRef
20.
Zurück zum Zitat Yu L, Luo YM (2014) The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J Environ Chem Eng 2:220–229CrossRef Yu L, Luo YM (2014) The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J Environ Chem Eng 2:220–229CrossRef
21.
Zurück zum Zitat Sayili H, Guzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004CrossRef Sayili H, Guzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004CrossRef
22.
Zurück zum Zitat Tsai WT, Liu SC (2013) Effect of temperature on thermochemical property and true density of torrefied coffee residue. J Anal Appl Pyrolysis 102:47–52CrossRef Tsai WT, Liu SC (2013) Effect of temperature on thermochemical property and true density of torrefied coffee residue. J Anal Appl Pyrolysis 102:47–52CrossRef
23.
Zurück zum Zitat Touray N, Tsai WT, Chen HL, Liu SC (2014) Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures. J Anal Appl Pyrolysis 109:116–122CrossRef Touray N, Tsai WT, Chen HL, Liu SC (2014) Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures. J Anal Appl Pyrolysis 109:116–122CrossRef
24.
Zurück zum Zitat Gregg SJ, Sing KSW (1982) Adsorption, surface area, and porosity. Academic Press, London Gregg SJ, Sing KSW (1982) Adsorption, surface area, and porosity. Academic Press, London
25.
Zurück zum Zitat Suzuki M (1990) Adsorption engineering. Elsevier, Amsterdam Suzuki M (1990) Adsorption engineering. Elsevier, Amsterdam
26.
Zurück zum Zitat Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York
27.
Zurück zum Zitat Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powders: surface area, pore size and density. Springer, Dordrecht Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powders: surface area, pore size and density. Springer, Dordrecht
28.
Zurück zum Zitat Daud WMAW, Ali WSW (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol 93:63–69CrossRef Daud WMAW, Ali WSW (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol 93:63–69CrossRef
29.
Zurück zum Zitat Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:8443–8449CrossRef Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:8443–8449CrossRef
30.
Zurück zum Zitat Yang K, Peng J, Xia H, Zhang L, Srinivasakannan C, Guo S (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J Taiwan Inst Chem Eng 41:367–372CrossRef Yang K, Peng J, Xia H, Zhang L, Srinivasakannan C, Guo S (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J Taiwan Inst Chem Eng 41:367–372CrossRef
31.
Zurück zum Zitat Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169CrossRef Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169CrossRef
32.
Zurück zum Zitat Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46CrossRef Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46CrossRef
33.
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
34.
Zurück zum Zitat Chang YM, Tsai WT, Li MH (2015) Characterization of activated carbon prepared from chlorella-based algal residue. Bioresour Technol 184:344–348CrossRef Chang YM, Tsai WT, Li MH (2015) Characterization of activated carbon prepared from chlorella-based algal residue. Bioresour Technol 184:344–348CrossRef
Metadaten
Titel
Mesoporous activated carbon produced from coconut shell using a single-step physical activation process
verfasst von
Wen-Tien Tsai
Tasi-Jung Jiang
Publikationsdatum
22.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0322-x

Weitere Artikel der Ausgabe 3/2018

Biomass Conversion and Biorefinery 3/2018 Zur Ausgabe