Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2019

09.08.2017

Metacognitive learning approach for online tool condition monitoring

verfasst von: Mahardhika Pratama, Eric Dimla, Chow Yin Lai, Edwin Lughofer

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As manufacturing processes become increasingly automated, so should tool condition monitoring (TCM) as it is impractical to have human workers monitor the state of the tools continuously. Tool condition is crucial to ensure the good quality of products—worn tools affect not only the surface quality but also the dimensional accuracy, which means higher reject rate of the products. Therefore, there is an urgent need to identify tool failures before it occurs on the fly. While various versions of intelligent tool condition monitoring have been proposed, most of them suffer from a cognitive nature of traditional machine learning algorithms. They focus on the how-to-learn process without paying attention to other two crucial issues—what-to-learn, and when-to-learn. The what-to-learn and the when-to-learn provide self-regulating mechanisms to select the training samples and to determine time instants to train a model. A novel TCM approach based on a psychologically plausible concept, namely the metacognitive scaffolding theory, is proposed and built upon a recently published algorithm—recurrent classifier (rClass). The learning process consists of three phases: what-to-learn, how-to-learn, when-to-learn and makes use of a generalized recurrent network structure as a cognitive component. Experimental studies with real-world manufacturing data streams were conducted where rClass demonstrated the highest accuracy while retaining the lowest complexity over its counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today: Proceedings, 2(4–5), 3419–3428.CrossRef Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today: Proceedings, 2(4–5), 3419–3428.CrossRef
Zurück zum Zitat Angelov, P. P., & Filev, D. (2004). An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34, 484–498.CrossRef Angelov, P. P., & Filev, D. (2004). An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34, 484–498.CrossRef
Zurück zum Zitat Angelov, P. P., & Zhou, X. (2008a). Evolving fuzzy-rule-based classifiers from data streams. IEEE Transactions on Fuzzy Systems, 16(6), 1462–1475.CrossRef Angelov, P. P., & Zhou, X. (2008a). Evolving fuzzy-rule-based classifiers from data streams. IEEE Transactions on Fuzzy Systems, 16(6), 1462–1475.CrossRef
Zurück zum Zitat Angelov, P. P., Lughofer, E., & Zhou, X. (2008b). Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems, 159(23), 3160–3182.CrossRef Angelov, P. P., Lughofer, E., & Zhou, X. (2008b). Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems, 159(23), 3160–3182.CrossRef
Zurück zum Zitat Angelov, P. P., et al. (2010). Evolving intelligent systems—Methodology and applications. New York: Wiley.CrossRef Angelov, P. P., et al. (2010). Evolving intelligent systems—Methodology and applications. New York: Wiley.CrossRef
Zurück zum Zitat Angelov, P. P. (2010). Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Transactions on Systems, Man, Cybernetics Part-B: Cybernetics, 40(4), 898–910.CrossRef Angelov, P. P. (2010). Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Transactions on Systems, Man, Cybernetics Part-B: Cybernetics, 40(4), 898–910.CrossRef
Zurück zum Zitat Babu, G. S., & Suresh, S. (2013). Sequential projection-based metacognitive learning in a radial basis function network for classification problems. IEEE Transactions on Neural Networks, 24(2), 194–206.CrossRef Babu, G. S., & Suresh, S. (2013). Sequential projection-based metacognitive learning in a radial basis function network for classification problems. IEEE Transactions on Neural Networks, 24(2), 194–206.CrossRef
Zurück zum Zitat Burke L. I. (1989) Automated identification of tool wear states in machining processes : An application of self-organising neural networks. PhD Thesis, Department of Industrial Engineering and Operations Research, UC at Berkeley, USA Burke L. I. (1989) Automated identification of tool wear states in machining processes : An application of self-organising neural networks. PhD Thesis, Department of Industrial Engineering and Operations Research, UC at Berkeley, USA
Zurück zum Zitat Byrne, G., et al. (1995). Tool condition monitoring systems (TCMS)—The state of research and industrial application. Annals of CIRP, 44(2), 541–567.CrossRef Byrne, G., et al. (1995). Tool condition monitoring systems (TCMS)—The state of research and industrial application. Annals of CIRP, 44(2), 541–567.CrossRef
Zurück zum Zitat Cheng, W. Y., & Juang, C. F. (2014). A fuzzy model with online incremental SVM and margin-selective gradient descent learning for classification problems. IEEE Transactions on Fuzzy Systems, 22(2), 324–337. Cheng, W. Y., & Juang, C. F. (2014). A fuzzy model with online incremental SVM and margin-selective gradient descent learning for classification problems. IEEE Transactions on Fuzzy Systems, 22(2), 324–337.
Zurück zum Zitat Dimla, D. E, Sr., Lister, P. M., & Leighton, N. J. (1997). Neural network solutions to the tool condition monitoring problem in metal cutting—A critical review of methods. International Journal of Machining Tools Manufacture, 37(9), 1219–1241.CrossRef Dimla, D. E, Sr., Lister, P. M., & Leighton, N. J. (1997). Neural network solutions to the tool condition monitoring problem in metal cutting—A critical review of methods. International Journal of Machining Tools Manufacture, 37(9), 1219–1241.CrossRef
Zurück zum Zitat Dimla, D. E. Sr. (1998) Multivariate tool condition monitoring in a metal cutting operation using neural networks. Ph.D. Thesis, School of Engineering, The University of Wolverhampton Dimla, D. E. Sr. (1998) Multivariate tool condition monitoring in a metal cutting operation using neural networks. Ph.D. Thesis, School of Engineering, The University of Wolverhampton
Zurück zum Zitat Dimla, D. E, Sr. (2000). Sensor signals for tool wear monitoring in metal cutting operations—A review of methods. International Journal of Machine Tools and Manufacture, 40(8), 1073–1098.CrossRef Dimla, D. E, Sr. (2000). Sensor signals for tool wear monitoring in metal cutting operations—A review of methods. International Journal of Machine Tools and Manufacture, 40(8), 1073–1098.CrossRef
Zurück zum Zitat Ding, S. X. (2008). Model-based fault diagnosis techniques. Berlin: Springer. Ding, S. X. (2008). Model-based fault diagnosis techniques. Berlin: Springer.
Zurück zum Zitat Dornfeld, D. A. (1990). Neural network sensor fusion for tool condition monitoring. Annals CIRP, 39(1), 101–105.CrossRef Dornfeld, D. A. (1990). Neural network sensor fusion for tool condition monitoring. Annals CIRP, 39(1), 101–105.CrossRef
Zurück zum Zitat Elanayar, S. V. T., Shin, Y. C., & Kumara, S. (1990). Machining condition monitoring for automation using neural networks. In ASME’s winter annual meeting, monitoring and control of manufacturing processes, PED (Vol. 44, pp. 85–100). Elanayar, S. V. T., Shin, Y. C., & Kumara, S. (1990). Machining condition monitoring for automation using neural networks. In ASME’s winter annual meeting, monitoring and control of manufacturing processes, PED (Vol. 44, pp. 85–100).
Zurück zum Zitat Elbestawi, M. A., & Dumitrescu, M. (2006). Tool condition monitoring in machining—Neural networks. In W. Shen (Ed.), Information technology for balanced manufacturing systems. IFIP international federation for information processing (Vol. 20, pp. 5–16). Boston: Springer. Elbestawi, M. A., & Dumitrescu, M. (2006). Tool condition monitoring in machining—Neural networks. In W. Shen (Ed.), Information technology for balanced manufacturing systems. IFIP international federation for information processing (Vol. 20, pp. 5–16). Boston: Springer.
Zurück zum Zitat He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRef
Zurück zum Zitat Juang, C. F., & Lin, C. T. (1998). An on-line self-constructing neural fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems, 6(1), 12–32.CrossRef Juang, C. F., & Lin, C. T. (1998). An on-line self-constructing neural fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems, 6(1), 12–32.CrossRef
Zurück zum Zitat Juang, C. F., Lin, Y. Y., & Tu, C. C. (2010). A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets and Systems, 161(19), 2552–2568.CrossRef Juang, C. F., Lin, Y. Y., & Tu, C. C. (2010). A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets and Systems, 161(19), 2552–2568.CrossRef
Zurück zum Zitat Kasabov, N. K., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems, 10(2), 144–154. Kasabov, N. K., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems, 10(2), 144–154.
Zurück zum Zitat Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28–44.CrossRef Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28–44.CrossRef
Zurück zum Zitat Karmathi, S. V. (1994) On-line tool wear estimation in turning through sensor data fusion and neural networks. Ph.D Thesis, Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, USA. Karmathi, S. V. (1994) On-line tool wear estimation in turning through sensor data fusion and neural networks. Ph.D Thesis, Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, USA.
Zurück zum Zitat Lemos, A., Caminhas, W., & Gomide, F. (2013). Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Information Sciences, 220, 64–85.CrossRef Lemos, A., Caminhas, W., & Gomide, F. (2013). Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Information Sciences, 220, 64–85.CrossRef
Zurück zum Zitat Li, X., Er, M. J., Lim, B. S., Zhou, J. H., Gan, O. P., & Rutkowski, L. (2010). Fuzzy regression modelling for tool performance prediction and degradation detection. International Journal of Neural Systems, 20(5), 405–419.CrossRef Li, X., Er, M. J., Lim, B. S., Zhou, J. H., Gan, O. P., & Rutkowski, L. (2010). Fuzzy regression modelling for tool performance prediction and degradation detection. International Journal of Neural Systems, 20(5), 405–419.CrossRef
Zurück zum Zitat Lister, P. M. (1993) On-line measurement of tool wear. Ph.D. Thesis, Manufacturing and Machine Tools Division, Department of Mechanical Engineering, UMIST. Lister, P. M. (1993) On-line measurement of tool wear. Ph.D. Thesis, Manufacturing and Machine Tools Division, Department of Mechanical Engineering, UMIST.
Zurück zum Zitat Liu T. I., & Ko E. J. (1990) On-line recognition of drill wear via artificial neural networks. In ASME’s winter annual meeting, monitoring and control for manufacturing processes, PED (Vol. 44, pp. 101–110). Liu T. I., & Ko E. J. (1990) On-line recognition of drill wear via artificial neural networks. In ASME’s winter annual meeting, monitoring and control for manufacturing processes, PED (Vol. 44, pp. 101–110).
Zurück zum Zitat Lughofer, E. (2008). Flexfis: A robust incremental learning approach for evolving Takagi–Sugeno fuzzy models. IEEE Transactions on fuzzy systems, 16(6), 1393–1410.CrossRef Lughofer, E. (2008). Flexfis: A robust incremental learning approach for evolving Takagi–Sugeno fuzzy models. IEEE Transactions on fuzzy systems, 16(6), 1393–1410.CrossRef
Zurück zum Zitat Lughofer, E. (2011a). Evolving fuzzy systems—Methodologies, advanced concepts and applications. Berlin Heidelberg: Springer Verlag.CrossRef Lughofer, E. (2011a). Evolving fuzzy systems—Methodologies, advanced concepts and applications. Berlin Heidelberg: Springer Verlag.CrossRef
Zurück zum Zitat Lughofer, E. (2011b). On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets and Systems, 163(1), 1–23.CrossRef Lughofer, E. (2011b). On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets and Systems, 163(1), 1–23.CrossRef
Zurück zum Zitat Lughofer, E. (2012). Single-pass active learning with conflict and ignorance. Evolving Systems, 3(4), 251–271.CrossRef Lughofer, E. (2012). Single-pass active learning with conflict and ignorance. Evolving Systems, 3(4), 251–271.CrossRef
Zurück zum Zitat Lughofer, E., & Buchtala, O. (2013). Reliable all-pairs evolving fuzzy classifiers. IEEE Transactions on Fuzzy Systems, 21(4), 625–641.CrossRef Lughofer, E., & Buchtala, O. (2013). Reliable all-pairs evolving fuzzy classifiers. IEEE Transactions on Fuzzy Systems, 21(4), 625–641.CrossRef
Zurück zum Zitat Lughofer, E., Cernuda, C., Kindermann, S., & Pratama, M. (2015). Generalized smart evolving fuzzy systems. Evolving Systems, 6(4), 54–79.CrossRef Lughofer, E., Cernuda, C., Kindermann, S., & Pratama, M. (2015). Generalized smart evolving fuzzy systems. Evolving Systems, 6(4), 54–79.CrossRef
Zurück zum Zitat Lughofer, E., & Sayed-Mouchaweh, M. (2015). Autonomous data stream clustering implementing incremental split-and-merge techniques–Towards a plug-and-play approach. Information Sciences, 204, 54–79.CrossRef Lughofer, E., & Sayed-Mouchaweh, M. (2015). Autonomous data stream clustering implementing incremental split-and-merge techniques–Towards a plug-and-play approach. Information Sciences, 204, 54–79.CrossRef
Zurück zum Zitat Modi, S., Lin, Y., Cheng, L., Yang, G., Liu, L., & Zhang, W. J. (2011). A socially inspired framework for human state inference using expert opinion integration. IEEE Transactions on Mechatronics, 16(5), 874–878.CrossRef Modi, S., Lin, Y., Cheng, L., Yang, G., Liu, L., & Zhang, W. J. (2011). A socially inspired framework for human state inference using expert opinion integration. IEEE Transactions on Mechatronics, 16(5), 874–878.CrossRef
Zurück zum Zitat Noori-Khajavi, A., & Komanduri, R. (1995). Frequency and time domain analyses of sensor signals in drilling-II. Investigation on some problems associated with sensor integration. International Journal of Machine Tools Manufacture, 35(6), 795–815. Noori-Khajavi, A., & Komanduri, R. (1995). Frequency and time domain analyses of sensor signals in drilling-II. Investigation on some problems associated with sensor integration. International Journal of Machine Tools Manufacture, 35(6), 795–815.
Zurück zum Zitat Oentaryo, R.J et al. (2011) Bayesian ART-based fuzzy inference system: A new approach to prognosis of machining processes. In Proceedings of the IEEE international conference on prognostics and health management (PHM), Denver, Colorado (pp. 1–10) Oentaryo, R.J et al. (2011) Bayesian ART-based fuzzy inference system: A new approach to prognosis of machining processes. In Proceedings of the IEEE international conference on prognostics and health management (PHM), Denver, Colorado (pp. 1–10)
Zurück zum Zitat Oraby, S. E., & Hayhurst, D. R. (1991). Development of models for tool wear force relationships in metal cutting. International Journal of Machine Tools Manufacture, 33(2), 25–138. Oraby, S. E., & Hayhurst, D. R. (1991). Development of models for tool wear force relationships in metal cutting. International Journal of Machine Tools Manufacture, 33(2), 25–138.
Zurück zum Zitat Patra, J. C., & Kot, A. C. (2002). Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, Cybernetics-Part B: Cybernetics, 32(4), 505–511.CrossRef Patra, J. C., & Kot, A. C. (2002). Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, Cybernetics-Part B: Cybernetics, 32(4), 505–511.CrossRef
Zurück zum Zitat Pao, Y. H. (1989). Adaptive pattern recognition and neural networks. Reading, MA: Addison-Wesley. Pao, Y. H. (1989). Adaptive pattern recognition and neural networks. Reading, MA: Addison-Wesley.
Zurück zum Zitat Pan, Y., et al. (2014). Machine health condition prediction via online dynamic fuzzy neural networks. Engineering Applications of Artificial Intelligence, 25, 105–113.CrossRef Pan, Y., et al. (2014). Machine health condition prediction via online dynamic fuzzy neural networks. Engineering Applications of Artificial Intelligence, 25, 105–113.CrossRef
Zurück zum Zitat Pratama, M., et al. (2014b). GENEFIS: Towards a localist network. IEEE Transactions on Fuzzy Systems, 22(3), 547–562.CrossRef Pratama, M., et al. (2014b). GENEFIS: Towards a localist network. IEEE Transactions on Fuzzy Systems, 22(3), 547–562.CrossRef
Zurück zum Zitat Pratama, M., et al. (2014c). A novel meta-cognitive-based scaffolding classifier to sequential non-stationary classification problems, In Proceedings of 2014 international conference on fuzzy systems (pp. 369–376). Pratama, M., et al. (2014c). A novel meta-cognitive-based scaffolding classifier to sequential non-stationary classification problems, In Proceedings of 2014 international conference on fuzzy systems (pp. 369–376).
Zurück zum Zitat Pratama, M., Anavatti, S., Angelov, P. P., & Lughofer, E. (2014a). PANFIS: A novel incremental learning machine. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 55–68.CrossRef Pratama, M., Anavatti, S., Angelov, P. P., & Lughofer, E. (2014a). PANFIS: A novel incremental learning machine. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 55–68.CrossRef
Zurück zum Zitat Pratama, M., Anavatti, S., & Lu, J. (2015b). Recurrent classifier based on an incremental meta-cognitive scaffolding algorithm. IEEE Transactions on Fuzzy Systems, 23(6), 2048–2066.CrossRef Pratama, M., Anavatti, S., & Lu, J. (2015b). Recurrent classifier based on an incremental meta-cognitive scaffolding algorithm. IEEE Transactions on Fuzzy Systems, 23(6), 2048–2066.CrossRef
Zurück zum Zitat Pratama, M., Anavatti, S., & Lughofer, E. (2015a). pClass: An effective classifier to streaming examples. IEEE Transactions on Fuzzy Systems, 3(2), 369–386.CrossRef Pratama, M., Anavatti, S., & Lughofer, E. (2015a). pClass: An effective classifier to streaming examples. IEEE Transactions on Fuzzy Systems, 3(2), 369–386.CrossRef
Zurück zum Zitat Pratama, M., Er, M.-J., Li, X., Oentaryo, R. J., Lughofer, E., & Arifin, I. (2013). Data-driven modeling based on dynamic parsimonious fuzzy neural network. Neurocomputing, 110, 18–28. Pratama, M., Er, M.-J., Li, X., Oentaryo, R. J., Lughofer, E., & Arifin, I. (2013). Data-driven modeling based on dynamic parsimonious fuzzy neural network. Neurocomputing, 110, 18–28.
Zurück zum Zitat Pratama, M., Lughofer, E., Lim, C. P., Rahayu, W., Dillon, T., & Budiyono, A. (2016). pClass+: A novel evolving semi-supervised classifier, online and in-press. International Journal of Fuzzy Systems. doi:10.1007/s40815-016-0236-3. Pratama, M., Lughofer, E., Lim, C. P., Rahayu, W., Dillon, T., & Budiyono, A. (2016). pClass+: A novel evolving semi-supervised classifier, online and in-press. International Journal of Fuzzy Systems. doi:10.​1007/​s40815-016-0236-3.
Zurück zum Zitat Rangwala, S., & Dornfeld, D. (1990). Sensor integration using neural networks for intelligent tool condition monitoring. Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry, 112(3), 219–228. Rangwala, S., & Dornfeld, D. (1990). Sensor integration using neural networks for intelligent tool condition monitoring. Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry, 112(3), 219–228.
Zurück zum Zitat Rehorn, A. G., et al. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef Rehorn, A. G., et al. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef
Zurück zum Zitat Rong, H.-J., Sundararajan, N., Huang, G.-B., & Saratchandran, P. (2006). Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and time series prediction. Fuzzy Sets and Systems, 157(9), 1260–1275.CrossRef Rong, H.-J., Sundararajan, N., Huang, G.-B., & Saratchandran, P. (2006). Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and time series prediction. Fuzzy Sets and Systems, 157(9), 1260–1275.CrossRef
Zurück zum Zitat Sayed-Mouchaweh, M., & Lughofer, E. (2012). Learning in non-stationary environments: Methods and applications. New York: Springer.CrossRef Sayed-Mouchaweh, M., & Lughofer, E. (2012). Learning in non-stationary environments: Methods and applications. New York: Springer.CrossRef
Zurück zum Zitat Scheffer, C. (2004). Practical machinery vibration analysis and predictive maintenance. Oxford: Elsevier. Scheffer, C. (2004). Practical machinery vibration analysis and predictive maintenance. Oxford: Elsevier.
Zurück zum Zitat Savitha, R., Suresh, S., & Sundararajan, N. (2012). Metacognitive learning in a fully complex-valued radial basis function neural network. Neural Computation, 24(5), 1297–1328.CrossRef Savitha, R., Suresh, S., & Sundararajan, N. (2012). Metacognitive learning in a fully complex-valued radial basis function neural network. Neural Computation, 24(5), 1297–1328.CrossRef
Zurück zum Zitat Suresh, S., Dong, K., & Kim, H. (2010). A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing, 73(16), 3012–3019.CrossRef Suresh, S., Dong, K., & Kim, H. (2010). A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing, 73(16), 3012–3019.CrossRef
Zurück zum Zitat Subramanian, K., Savitha, R., & Suresh, R. (2013) Zero-error density maximization based learning algorithm for a neuro-fuzzy inference system II. In Proceedings of IEEE conference on fuzzy system (Fuzz-IEEE), Hyderabad, India (pp. 1–7) Subramanian, K., Savitha, R., & Suresh, R. (2013) Zero-error density maximization based learning algorithm for a neuro-fuzzy inference system II. In Proceedings of IEEE conference on fuzzy system (Fuzz-IEEE), Hyderabad, India (pp. 1–7)
Zurück zum Zitat Subramanian, K., Suresh, S., & Sundararajan, N. A. (2014a). Meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification systems. IEEE Transactions on Fuzzy Systems, 21(6), 1080–1095.CrossRef Subramanian, K., Suresh, S., & Sundararajan, N. A. (2014a). Meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification systems. IEEE Transactions on Fuzzy Systems, 21(6), 1080–1095.CrossRef
Zurück zum Zitat Subramanian, K., Das, A. K., Suresh, S., & Savitha, R. (2014b). A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm. Evolving Systems, 5(4), 219–230.CrossRef Subramanian, K., Das, A. K., Suresh, S., & Savitha, R. (2014b). A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm. Evolving Systems, 5(4), 219–230.CrossRef
Zurück zum Zitat Vigdor, B., & Lerner, B. (2007). The Bayesian ARTMAP. IEEE Transactions on Neural Networks, 18(6), 1628–1644.CrossRef Vigdor, B., & Lerner, B. (2007). The Bayesian ARTMAP. IEEE Transactions on Neural Networks, 18(6), 1628–1644.CrossRef
Zurück zum Zitat Wang, H., et al. (2014). Fisher discriminant analysis with L1-normal. IEEE Transactions on Cybernetics, 44(6), 828–842.CrossRef Wang, H., et al. (2014). Fisher discriminant analysis with L1-normal. IEEE Transactions on Cybernetics, 44(6), 828–842.CrossRef
Zurück zum Zitat Wang, N., Er, M. J., Meng, X., & Li, X. (2010). An online self-organizing scheme for parsimonious and accurate fuzzy neural networks. International Journal of Neural Systems, 20(5), 389–403.CrossRef Wang, N., Er, M. J., Meng, X., & Li, X. (2010). An online self-organizing scheme for parsimonious and accurate fuzzy neural networks. International Journal of Neural Systems, 20(5), 389–403.CrossRef
Zurück zum Zitat Wood, D. (2001). Scaffolding contingent tutoring and computer-based learning. International Journal of Artificial Intelligence in Education, 12(3), 280–292. Wood, D. (2001). Scaffolding contingent tutoring and computer-based learning. International Journal of Artificial Intelligence in Education, 12(3), 280–292.
Zurück zum Zitat Xu, Y., Wong, K. W., & Leung, C. S. (2006). Generalized recursive least square to the training of neural network. IEEE Transaction on Neural Networks, 17(1), 19. Xu, Y., Wong, K. W., & Leung, C. S. (2006). Generalized recursive least square to the training of neural network. IEEE Transaction on Neural Networks, 17(1), 19.
Zurück zum Zitat Xue, L., Liu, C.J., Lin, Y., & Zhang, W.J. (2015) On redundant interface: Concept and design principle. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics. July 8–11, Busan, South Korea. Xue, L., Liu, C.J., Lin, Y., & Zhang, W.J. (2015) On redundant interface: Concept and design principle. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics. July 8–11, Busan, South Korea.
Zurück zum Zitat Xiong, S., Azimi, J., & Fern, X. Z. (2014). Active learning of constraints for semi-supervised clustering. IEEE Transactions on Knowledge and Data Engineering, 26(1), 43–54. Xiong, S., Azimi, J., & Fern, X. Z. (2014). Active learning of constraints for semi-supervised clustering. IEEE Transactions on Knowledge and Data Engineering, 26(1), 43–54.
Zurück zum Zitat Yager, R. R., & Filev, D. P. (1994). Generation of fuzzy rules by mountain clustering. Journal of Intelligent and Fuzzy Rules, 2(3), 209–219. Yager, R. R., & Filev, D. P. (1994). Generation of fuzzy rules by mountain clustering. Journal of Intelligent and Fuzzy Rules, 2(3), 209–219.
Zurück zum Zitat Zhang, W. J., & Van Luttervely, C. A. (2011). Toward a resilient manufacturing system. CIRP Annals-Manufacturing Technology, 60, 469–472. Zhang, W. J., & Van Luttervely, C. A. (2011). Toward a resilient manufacturing system. CIRP Annals-Manufacturing Technology, 60, 469–472.
Zurück zum Zitat Zhang, W. J., & Wang, J. W. (2016). Design theory and methodology for enterprise systems (Editorial). Enterprise Information Systems, 10(3), 245–248.CrossRef Zhang, W. J., & Wang, J. W. (2016). Design theory and methodology for enterprise systems (Editorial). Enterprise Information Systems, 10(3), 245–248.CrossRef
Zurück zum Zitat Zhao, Y., Jian, S., Gupta, M. M., Moody, W., Laverty, W. H., & Zhang, W. J. (2016). Developing a mapping from affective words to design parameters for affective design of apparel products. Textile Research Journal. doi:10.1177/0040517516669072. Zhao, Y., Jian, S., Gupta, M. M., Moody, W., Laverty, W. H., & Zhang, W. J. (2016). Developing a mapping from affective words to design parameters for affective design of apparel products. Textile Research Journal. doi:10.​1177/​0040517516669072​.
Zurück zum Zitat Zliobaite, I., Bifet, A., Pfahringer, B., & Holmes, B. (2014). Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 27–39.CrossRef Zliobaite, I., Bifet, A., Pfahringer, B., & Holmes, B. (2014). Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 27–39.CrossRef
Metadaten
Titel
Metacognitive learning approach for online tool condition monitoring
verfasst von
Mahardhika Pratama
Eric Dimla
Chow Yin Lai
Edwin Lughofer
Publikationsdatum
09.08.2017
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2019
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-017-1348-9

Weitere Artikel der Ausgabe 4/2019

Journal of Intelligent Manufacturing 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.