Skip to main content

2012 | OriginalPaper | Buchkapitel

9. Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles

verfasst von : Angela Ivask, Saji George, Olesja Bondarenko, Anne Kahru

Erschienen in: Nano-Antimicrobials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal-based antiseptics like silver, zinc oxide, copper and titanium dioxide have proven their efficacy long time before nanorevolution. The rapid development of nanotechnology during the past ten years has allowed even further increases in their antimicrobial potency. Indeed, the development and use of nano-Ag or nano-Cu/CuO coated surfaces and application of ZnO and TiO2 nanoparticles in personal care products is rapidly increasing. The main reason for the increased efficacy of nano-size metal-based antiseptics compared to their micro-sized counterparts is their increased relative surface area that translates into higher reactivity, e.g., improved dissolution of inhibitory concentrations of metal ions. In this chapter, we discuss the recent findings on the antimicrobial mechanisms of metal-based nanomaterials with special emphasis on metal dissolution. We also discuss the (bio)analytical methods that have been developed and/or applied to discriminate between the toxic effects mediated by metal dissolution and nanomaterials per se. The discrimination between these two mechanisms of toxicity is important for basic mechanistic research as well as for designing new nano-antimicrobials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19): 3527–3532. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19): 3527–3532.
Zurück zum Zitat Akhavan O, Ghaderi E (2010) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205(1): 219–223. Akhavan O, Ghaderi E (2010) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205(1): 219–223.
Zurück zum Zitat Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11): 1175–1186. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11): 1175–1186.
Zurück zum Zitat Allen HE, Fu G, Boothman W, DiToro D, Mahony JD (1991) Draft Analytical Method for Determination of Acid Volatile Sulfide in Sediment. U.S. Environmental Protection Agency, Washington, DC. Allen HE, Fu G, Boothman W, DiToro D, Mahony JD (1991) Draft Analytical Method for Determination of Acid Volatile Sulfide in Sediment. U.S. Environmental Protection Agency, Washington, DC.
Zurück zum Zitat Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6): 842–852. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6): 842–852.
Zurück zum Zitat Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4): 1461–1468. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4): 1461–1468.
Zurück zum Zitat AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2): 279–290. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2): 279–290.
Zurück zum Zitat Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci Total Environ 409(8): 1603–1608. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci Total Environ 409(8): 1603–1608.
Zurück zum Zitat Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer – silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1): 18–21. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer – silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1): 18–21.
Zurück zum Zitat Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) Shape dependent electrocatalytic behaviour of silver nanoparticles. Cryst Eng Comm 12(12): 4280–4286. Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) Shape dependent electrocatalytic behaviour of silver nanoparticles. Cryst Eng Comm 12(12): 4280–4286.
Zurück zum Zitat Behnke U (1983) T. D. Brock: Membrane Filtration. A User’s Guide and Reference Manual. 381 Seiten, 115 Abb., 27 Tab. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo 1983, Preis: 87,- DM. Food/Nahrung 27(10): 1025. Behnke U (1983) T. D. Brock: Membrane Filtration. A User’s Guide and Reference Manual. 381 Seiten, 115 Abb., 27 Tab. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo 1983, Preis: 87,- DM. Food/Nahrung 27(10): 1025.
Zurück zum Zitat Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11): 4133–4139. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11): 4133–4139.
Zurück zum Zitat Borkow G, Okon-Levy N, Gabbay J (2010) Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds 22(12): 301–310. Borkow G, Okon-Levy N, Gabbay J (2010) Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds 22(12): 301–310.
Zurück zum Zitat Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4): 866–870. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4): 866–870.
Zurück zum Zitat Buffle A, Perret D, Newman M (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids and macromolecules. In: Buffle A, Leeuwen HP (eds) Environmental Particles, vol. 1. Lewis Publishers, Boca Raton. Buffle A, Perret D, Newman M (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids and macromolecules. In: Buffle A, Leeuwen HP (eds) Environmental Particles, vol. 1. Lewis Publishers, Boca Raton.
Zurück zum Zitat Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester.
Zurück zum Zitat Carlson C, Hussain SM, Schrand AM, Braydich-Stolle K, Hess L, Jones KL and Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43): 13608–13619. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle K, Hess L, Jones KL and Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43): 13608–13619.
Zurück zum Zitat Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62(21–22): 3607–3609. Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62(21–22): 3607–3609.
Zurück zum Zitat Chen WJ, Pei-Jane T, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4: 485–491. Chen WJ, Pei-Jane T, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4: 485–491.
Zurück zum Zitat Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12): 4583–4588. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12): 4583–4588.
Zurück zum Zitat Choi O, Deng KK, Kim NJ, Ross JL, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12): 3066–3074. Choi O, Deng KK, Kim NJ, Ross JL, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12): 3066–3074.
Zurück zum Zitat Choi O, Clevenger TE, Deng B, Surampalli RY, Ross JL, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7): 1879–1886. Choi O, Clevenger TE, Deng B, Surampalli RY, Ross JL, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7): 1879–1886.
Zurück zum Zitat Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17: 5255–5762. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17: 5255–5762.
Zurück zum Zitat Daunert S, Barrett G, Feliciano J, Shetty R, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7): 2705–2738. Daunert S, Barrett G, Feliciano J, Shetty R, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7): 2705–2738.
Zurück zum Zitat Dibrov P, Dzioba J, Gosnik KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8): 2668–2670. Dibrov P, Dzioba J, Gosnik KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46(8): 2668–2670.
Zurück zum Zitat Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with their metal ions. Environ Pollut 159(7): 1749–1756. Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with their metal ions. Environ Pollut 159(7): 1749–1756.
Zurück zum Zitat Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. J Trace Elem Med Biol 2(2): 80–87. Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. J Trace Elem Med Biol 2(2): 80–87.
Zurück zum Zitat El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT,Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1): 283–287. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT,Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1): 283–287.
Zurück zum Zitat El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80(3): 779–782. El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80(3): 779–782.
Zurück zum Zitat Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112(31): 11758–11766. Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112(31): 11758–11766.
Zurück zum Zitat Fan FRF, Bard AJ (2001) Chemical, electrochemical, gravimetric and microscopic studies on antimicrobial silverfilms. J Phys Chem B 106(2): 279–287. Fan FRF, Bard AJ (2001) Chemical, electrochemical, gravimetric and microscopic studies on antimicrobial silverfilms. J Phys Chem B 106(2): 279–287.
Zurück zum Zitat Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1): 117–125. Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1): 117–125.
Zurück zum Zitat Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1): 1–6. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1): 1–6.
Zurück zum Zitat Foster H, Ditta I, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6): 1847–1868. Foster H, Ditta I, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6): 1847–1868.
Zurück zum Zitat Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24): 8484–8490. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24): 8484–8490.
Zurück zum Zitat Gajjar P, Pettee B, Britt DB, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3(9): 1–13. Gajjar P, Pettee B, Britt DB, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3(9): 1–13.
Zurück zum Zitat Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9): 3322–3328. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43(9): 3322–3328.
Zurück zum Zitat Gelover S, Gómez LA, Reyes K, Teresa Leal M (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17): 3274–3280. Gelover S, Gómez LA, Reyes K, Teresa Leal M (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17): 3274–3280.
Zurück zum Zitat George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1): 15–29. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L, Nel AE (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1): 15–29.
Zurück zum Zitat George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3): 1805–1817. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3): 1805–1817.
Zurück zum Zitat Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 8(12): 1034–1041. Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 8(12): 1034–1041.
Zurück zum Zitat Handy R, von der Kammer F, Lead J, Hassellöv M, Owen R, Crane M (2008) The ecotoxicol and chemistry of manufactured nanoparticles. Ecotoxicol 17(4): 287–314. Handy R, von der Kammer F, Lead J, Hassellöv M, Owen R, Crane M (2008) The ecotoxicol and chemistry of manufactured nanoparticles. Ecotoxicol 17(4): 287–314.
Zurück zum Zitat Heinlaan M, Ivask A, Blinova, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7): 1308–1316. Heinlaan M, Ivask A, Blinova, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7): 1308–1316.
Zurück zum Zitat Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45(179–190). Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45(179–190).
Zurück zum Zitat Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7): 2562–2569. Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7): 2562–2569.
Zurück zum Zitat Holt K, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochem 44(39): 13214–13223. Holt K, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochem 44(39): 13214–13223.
Zurück zum Zitat Hong J, Ma H, Otaki M (2005) Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 99(6): 592–597. Hong J, Ma H, Otaki M (2005) Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 99(6): 592–597.
Zurück zum Zitat Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6): 746–750. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6): 746–750.
Zurück zum Zitat Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59(5): 1668–1670. Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59(5): 1668–1670.
Zurück zum Zitat Ivask A, Francois M, Kahru A, Dubourguier H-C, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 22: 147–156. Ivask A, Francois M, Kahru A, Dubourguier H-C, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 22: 147–156.
Zurück zum Zitat Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22: 1396–1402. Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22: 1396–1402.
Zurück zum Zitat Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9(1): 41. Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9(1): 41.
Zurück zum Zitat Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2): 701–716. Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2): 701–716.
Zurück zum Zitat Ivask A, Dubourguier H-C, Põllumaa L, Kahru A (2011) Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J Soil Sediment 11(2): 231–237. Ivask A, Dubourguier H-C, Põllumaa L, Kahru A (2011) Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J Soil Sediment 11(2): 231–237.
Zurück zum Zitat Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5): 1619–1625. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5): 1619–1625.
Zurück zum Zitat Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44(19): 7321–7328. Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44(19): 7321–7328.
Zurück zum Zitat Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1): 71–76. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1): 71–76.
Zurück zum Zitat Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion on Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7): 2171–2178. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion on Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7): 2171–2178.
Zurück zum Zitat Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2): 233–239. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2): 233–239.
Zurück zum Zitat Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119. Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.
Zurück zum Zitat Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicol 269(2–3): 89–91. Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicol 269(2–3): 89–91.
Zurück zum Zitat Kahru A, Ivask A, Kasemets K, Põllumaa L, Kurvet I, François M, Dubourguier H-C (2005) Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ Toxicol Chem 24(11): 2973–2982. Kahru A, Ivask A, Kasemets K, Põllumaa L, Kurvet I, François M, Dubourguier H-C (2005) Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ Toxicol Chem 24(11): 2973–2982.
Zurück zum Zitat Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicol of metal oxide nanoparticles: A minireview. Sensors 8(8): 5153–5170. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicol of metal oxide nanoparticles: A minireview. Sensors 8(8): 5153–5170.
Zurück zum Zitat Käkinen A, Bondarenko O, Ivask A, Kahru A (2011) The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11(11):10502–10521. Käkinen A, Bondarenko O, Ivask A, Kahru A (2011) The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11(11):10502–10521.
Zurück zum Zitat Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6): 1116–1122. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6): 1116–1122.
Zurück zum Zitat Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A: Chemistry 106(1–3): 51–56. Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A: Chemistry 106(1–3): 51–56.
Zurück zum Zitat Kim JS (2007) Antibacterial activity of Ag + ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13(5): 718–722. Kim JS (2007) Antibacterial activity of Ag + ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13(5): 718–722.
Zurück zum Zitat Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80(2): 227–232. Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80(2): 227–232.
Zurück zum Zitat Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3(1): 95–101. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3(1): 95–101.
Zurück zum Zitat Kim J, Jungeun L, Soonchul K, Sunghoon J (2009a) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 9: 1098–1102. Kim J, Jungeun L, Soonchul K, Sunghoon J (2009a) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 9: 1098–1102.
Zurück zum Zitat Kim KJ, Sung W, Suh B, Moon SK, Choi JS, Kim J, Lee D (2009b) Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 22(2): 235–242. Kim KJ, Sung W, Suh B, Moon SK, Choi JS, Kim J, Lee D (2009b) Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 22(2): 235–242.
Zurück zum Zitat Kimura T, Nishioka H (1997) Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res-Gen Tox En 389(2–3): 237–242. Kimura T, Nishioka H (1997) Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res-Gen Tox En 389(2–3): 237–242.
Zurück zum Zitat Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71(5): 2548–2557. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71(5): 2548–2557.
Zurück zum Zitat Kvitek L, Panaček A, Soukupova J, Kolar M, Večerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15): 5825–5834. Kvitek L, Panaček A, Soukupova J, Kolar M, Večerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15): 5825–5834.
Zurück zum Zitat Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver: bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98(6): 1054–1060. Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver: bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98(6): 1054–1060.
Zurück zum Zitat Leskinen P, Virta M, Karp M (2003) One-step measurement of firefly luciferase activity in yeast. Yeast 20(13): 1109–1113. Leskinen P, Virta M, Karp M (2003) One-step measurement of firefly luciferase activity in yeast. Yeast 20(13): 1109–1113.
Zurück zum Zitat Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EMV (2010) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2): 755–761. Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EMV (2010) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2): 755–761.
Zurück zum Zitat Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5): 1977–1983. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5): 1977–1983.
Zurück zum Zitat Liau, SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25: 279–283. Liau, SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25: 279–283.
Zurück zum Zitat Liu J, Hurt, RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6): 2169–2175. Liu J, Hurt, RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6): 2169–2175.
Zurück zum Zitat Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4): 1193–1201. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4): 1193–1201.
Zurück zum Zitat Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11): 6903–6913. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11): 6903–6913.
Zurück zum Zitat Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4): 916–924. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4): 916–924.
Zurück zum Zitat Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC 12(4): 527–534. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam P, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC 12(4): 527–534.
Zurück zum Zitat Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. JNR 12: 1531–1551. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. JNR 12: 1531–1551.
Zurück zum Zitat Maynard AD (2007) Nanotechnology – toxicological issues and environmental safety and environmental safety. In: Project on Emerging Nanotechnologies, vols–14. Woodrow Wilson International Center for Scholars, Washington, DC. Maynard AD (2007) Nanotechnology – toxicological issues and environmental safety and environmental safety. In: Project on Emerging Nanotechnologies, vols–14. Woodrow Wilson International Center for Scholars, Washington, DC.
Zurück zum Zitat McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12(1): 147–179. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12(1): 147–179.
Zurück zum Zitat Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3): 677–684. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159(3): 677–684.
Zurück zum Zitat International Council on Mining and Metals (2007) MERAG: Metals Environmental Risk Assessment Guidance. London, UK. International Council on Mining and Metals (2007) MERAG: Metals Environmental Risk Assessment Guidance. London, UK.
Zurück zum Zitat Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3): 389–399. Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3): 389–399.
Zurück zum Zitat Morones JR, Elechiguerra JL, Camacho A, Holt KB, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16: 2346–2353. Morones JR, Elechiguerra JL, Camacho A, Holt KB, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16: 2346–2353.
Zurück zum Zitat Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicol 269(2–3): 182–189. Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicol 269(2–3): 182–189.
Zurück zum Zitat Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12): 4447–4453. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12): 4447–4453.
Zurück zum Zitat Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23): 8959–8964. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23): 8959–8964.
Zurück zum Zitat Neal A (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicol 17(5): 362–371. Neal A (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicol 17(5): 362–371.
Zurück zum Zitat Nel A, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7): 543–557. Nel A, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7): 543–557.
Zurück zum Zitat Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganisms - a review. In: Kim YK, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht/Heidelberg/London/New York. Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganisms - a review. In: Kim YK, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht/Heidelberg/London/New York.
Zurück zum Zitat Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4): 1177–1183. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4): 1177–1183.
Zurück zum Zitat Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6): 1712–1720. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6): 1712–1720.
Zurück zum Zitat Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B 110(33): 16248–16253. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B 110(33): 16248–16253.
Zurück zum Zitat Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133: 3–35. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133: 3–35.
Zurück zum Zitat Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4): 1027–1032. Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4): 1027–1032.
Zurück zum Zitat Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631(2): 129–141. Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631(2): 129–141.
Zurück zum Zitat Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nano 6(3): 175–178. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nano 6(3): 175–178.
Zurück zum Zitat Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Tech Ser 24: 192–196. Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Tech Ser 24: 192–196.
Zurück zum Zitat Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1): 76–83. Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27(1): 76–83.
Zurück zum Zitat Rajendran R, Balakumar C, Mohammed Ahammed HA, Jayakumar S, Vaideki K, Rajesh EM (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci 2(1): 202–208. Rajendran R, Balakumar C, Mohammed Ahammed HA, Jayakumar S, Vaideki K, Rajesh EM (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci 2(1): 202–208.
Zurück zum Zitat Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J of Antimicrob Ag 33(6): 587–590. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J of Antimicrob Ag 33(6): 587–590.
Zurück zum Zitat Rice RH, Vidrio EA, Kumfer BM, Qin Q, Willits NH, Kennedy IM, Anastasio C (2009) Generation of oxidant response to copper and iron nanoparticles and salts: stimulation by ascorbate. Chem-Biol Interact 181(3): 359–365. Rice RH, Vidrio EA, Kumfer BM, Qin Q, Willits NH, Kennedy IM, Anastasio C (2009) Generation of oxidant response to copper and iron nanoparticles and salts: stimulation by ascorbate. Chem-Biol Interact 181(3): 359–365.
Zurück zum Zitat Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12): 4227–4233. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12): 4227–4233.
Zurück zum Zitat Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4): 869–876. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61(4): 869–876.
Zurück zum Zitat Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3): 707–716. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3): 707–716.
Zurück zum Zitat Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5): 1180–1187. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5): 1180–1187.
Zurück zum Zitat Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30): 9798–9808. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30): 9798–9808.
Zurück zum Zitat Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Meth 54(2): 177–182. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Meth 54(2): 177–182.
Zurück zum Zitat Sebastian Tomi N, Kränke B, Aberer W (2004) A silver man. Lancet 363(9408): 532. Sebastian Tomi N, Kränke B, Aberer W (2004) A silver man. Lancet 363(9408): 532.
Zurück zum Zitat Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008). Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14): 7457–7464. Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008). Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14): 7457–7464.
Zurück zum Zitat Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1): 177–182. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1): 177–182.
Zurück zum Zitat Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark, WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3): 169–174. Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark, WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3): 169–174.
Zurück zum Zitat Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. (1998). Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environmental Science & Technology 32(5):726–728. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. (1998). Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environmental Science & Technology 32(5):726–728.
Zurück zum Zitat Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against foodborne pathogens. J Food Safety: 31(2): 211–218. Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against foodborne pathogens. J Food Safety: 31(2): 211–218.
Zurück zum Zitat Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M (2003) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433(1–2): 186–190. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M (2003) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433(1–2): 186–190.
Zurück zum Zitat Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WHS, Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32(2): 167–174. Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WHS, Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32(2): 167–174.
Zurück zum Zitat Vertelov GK, Krutyakov TA, Eremenkova OV, Olenin AY, Lisichkin, GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles Nanotechnol 19(35): 355707. doi:10.1088/0957-4484/19/35/355707. Vertelov GK, Krutyakov TA, Eremenkova OV, Olenin AY, Lisichkin, GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles Nanotechnol 19(35): 355707. doi:10.1088/0957-4484/19/35/355707.
Zurück zum Zitat Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5): 934–938. Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5): 934–938.
Zurück zum Zitat White JML, Powell AM, Brady K, Russell-Jones R (2003) Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin Exp Dermatol 28(3): 254–256. White JML, Powell AM, Brady K, Russell-Jones R (2003) Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin Exp Dermatol 28(3): 254–256.
Zurück zum Zitat Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2009) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408(7): 1755–1758. Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2009) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408(7): 1755–1758.
Zurück zum Zitat Wu B, Wang Y, Lee YH, Horst A, Wang Z, Chen DR, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44(4): 1484–1489. Wu B, Wang Y, Lee YH, Horst A, Wang Z, Chen DR, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44(4): 1484–1489.
Zurück zum Zitat Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10): 2121–2134. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10): 2121–2134.
Zurück zum Zitat Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4): 1251–1255. Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4): 1251–1255.
Zurück zum Zitat Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). JNR 9(3): 479–489. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). JNR 9(3): 479–489.
Zurück zum Zitat Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325(2): 371–376. Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325(2): 371–376.
Metadaten
Titel
Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles
verfasst von
Angela Ivask
Saji George
Olesja Bondarenko
Anne Kahru
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-24428-5_9

Neuer Inhalt