Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2008

01.12.2008

Metallurgical Design of High-Performance GMAW Electrodes for Joining HSLA-65 Steel

verfasst von: V. Sampath, J. Kehl II, C. Vizza, R. Varadan, K. Sampath

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A C++ algorithm was used to metallurgically design high-performance GMAW electrodes for joining HSLA-65 steel. The electrode design was based on: (1) a carbon content ≤0.06 wt.% for improved weldability, (2) a 5-15% lower Ar3 transformation temperature than HSLA-65 steel for enhanced strength and toughness, and (3) a desirable range of carbon equivalent number (CEN) for consistently overmatching the minimum specified tensile strength of HSLA-65 steel. The algorithm utilized a set of boundary conditions that included calculated Ar3, BS, BF, and MS transformation temperatures besides CEN. Numerical ranges for boundary conditions were derived from chemical compositions of commercial HSLA-65 steel, substituting thermomechanical effects with weld solidification effects. The boundary conditions were applied in evaluating chemical composition ranges of the following three prospective welding electrode specification groups that offered to provide ≤0.06 wt.% carbon, a minimum transverse-weld tensile strength of 552 MPa (80 ksi), and a minimum CVN impact toughness of 27 J at −29 °C through −51 °C (20 ft lbf at −20 °F through −60 °F) in the as-welded condition: (1) ER80S-Ni1, (2) E90C-K3, and (3) E80C-W2. At ≤0.06 wt.% carbon, the algorithm returned over 3100 results for E90C-K3 that satisfied the boundary conditions, but returned no acceptable results for other two electrode specification groups. Results revealed that welding electrode designs based on an Fe-C-Mn-Ni-Mo system, containing 0.06 wt.% C, 1.6 wt.% Mn, 0.8 wt.% Ni, and 0.3 wt.% Mo that provide weld metals characterized by an Ar3 of 690 °C, a CEN of 0.29, and a (BF − MS) of 30 °C are expected to consistently overmatch the minimum specified tensile strength of HSLA-65 steel while offering a minimum CVN impact toughness of 41 J at −40 °C (30 ft lbf at −40 °F).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K. Sampath, 2006. An Understanding of HSLA-65 Plate Steels Journal of Materials Engineering and Performance 15(1):32–40CrossRef K. Sampath, 2006. An Understanding of HSLA-65 Plate Steels Journal of Materials Engineering and Performance 15(1):32–40CrossRef
2.
Zurück zum Zitat ASTM A945/A945M-00, 2000. “Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness,” American Society for Testing & Materials, Philadelphia, PA ASTM A945/A945M-00, 2000. “Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness,” American Society for Testing & Materials, Philadelphia, PA
3.
Zurück zum Zitat P.J. Konkol, J.L. Warren, and P.A. Hebert, 1998. Weldability of HSLA-65 Steel for Ship Structures. Welding Journal, 77(9):361s–371s P.J. Konkol, J.L. Warren, and P.A. Hebert, 1998. Weldability of HSLA-65 Steel for Ship Structures. Welding Journal, 77(9):361s–371s
4.
Zurück zum Zitat A5.28–05, 2005. “Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding,” American Welding Society, Miami, FL A5.28–05, 2005. “Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding,” American Welding Society, Miami, FL
5.
Zurück zum Zitat K. Sampath, 2007. How to Choose Electrodes for Joining High-Strength Steels. Welding Journal, 86(7):26–28 K. Sampath, 2007. How to Choose Electrodes for Joining High-Strength Steels. Welding Journal, 86(7):26–28
6.
Zurück zum Zitat N. Yurioka H. Suzuki S., and Ohshita S. Saito, 1983. Determination of Necessary Preheating Temperature in Steel Welding. Welding Journal, 62(6):147s–153s N. Yurioka H. Suzuki S., and Ohshita S. Saito, 1983. Determination of Necessary Preheating Temperature in Steel Welding. Welding Journal, 62(6):147s–153s
7.
Zurück zum Zitat C. Ouchi T. Sampei, and I. Kozasu, 1982. The Effect of Hot Rolling Condition and Chemical Composition on the Onset Temperature of Austenite-to-Ferrite Transformation After Hot Rolling. Transactions of the Iron and Steel Institute of Japan, 22:214–222CrossRef C. Ouchi T. Sampei, and I. Kozasu, 1982. The Effect of Hot Rolling Condition and Chemical Composition on the Onset Temperature of Austenite-to-Ferrite Transformation After Hot Rolling. Transactions of the Iron and Steel Institute of Japan, 22:214–222CrossRef
8.
Zurück zum Zitat W. Steven, and A. G. Haynes, 1956. The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels. Journal of the Iron and Steel Institute, 183(8):349–359 W. Steven, and A. G. Haynes, 1956. The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels. Journal of the Iron and Steel Institute, 183(8):349–359
9.
Zurück zum Zitat K. W. Andrews, 1965. Empirical Formulae for the Calculation of Some Transformation Temperatures. Journal of the Iron and Steel Institute, 203(7):721–727 K. W. Andrews, 1965. Empirical Formulae for the Calculation of Some Transformation Temperatures. Journal of the Iron and Steel Institute, 203(7):721–727
10.
Zurück zum Zitat K. Sampath, 2005. Constraints Based Modeling Enables Successful Development of a Welding Electrode Specification for Critical Navy Applications. Welding Journal, 84(8):131s–138s K. Sampath, 2005. Constraints Based Modeling Enables Successful Development of a Welding Electrode Specification for Critical Navy Applications. Welding Journal, 84(8):131s–138s
11.
Zurück zum Zitat K. Sampath, and R. Varadan, 2006. Evaluation of Chemical Composition Limits of GMA Welding Electrode Specifications for HSLA-100 Steel. Welding Journal, 85(8):163s–173s K. Sampath, and R. Varadan, 2006. Evaluation of Chemical Composition Limits of GMA Welding Electrode Specifications for HSLA-100 Steel. Welding Journal, 85(8):163s–173s
12.
Zurück zum Zitat D.P. Fairchild, J. Koo, N.V. Bangaru, M.L. Macia, D.L. Beeson, and A. Ozekcin, Weld Metals with Superior Low Temperature Toughness for Joining High Strength, Low Alloy Steels, US Patent 6,565,678, May 2003 D.P. Fairchild, J. Koo, N.V. Bangaru, M.L. Macia, D.L. Beeson, and A. Ozekcin, Weld Metals with Superior Low Temperature Toughness for Joining High Strength, Low Alloy Steels, US Patent 6,565,678, May 2003
13.
Zurück zum Zitat K. E. Dorschu, and A. Lesnewich, 1964. Development of a Filler Metal for a High-Toughness Alloy Plate Steel with a Minimum Yield Strength of 140 ksi. Welding Journal, 43(12):564s–576s K. E. Dorschu, and A. Lesnewich, 1964. Development of a Filler Metal for a High-Toughness Alloy Plate Steel with a Minimum Yield Strength of 140 ksi. Welding Journal, 43(12):564s–576s
14.
Zurück zum Zitat J. E. Lyttle K. E. Dorschu, and W. A. Fragetta, 1969. Some Metallurgical Characteristics of Tough, High-Strength Welds. Welding Journal, 48(11):493s–498s J. E. Lyttle K. E. Dorschu, and W. A. Fragetta, 1969. Some Metallurgical Characteristics of Tough, High-Strength Welds. Welding Journal, 48(11):493s–498s
15.
Zurück zum Zitat R. J. Wong, and M. D. Hayes, 1990. The Metallurgy, Welding & Qualification of Microalloyed (HSLA) Steel Weldments, 450–489. American Welding Society, Miami, FL R. J. Wong, and M. D. Hayes, 1990. The Metallurgy, Welding & Qualification of Microalloyed (HSLA) Steel Weldments, 450–489. American Welding Society, Miami, FL
16.
Zurück zum Zitat P. T. Oldland, C. W. Ramsay, D. K. Matlock, and D. L. Olsen, 1989. Significant Features of High-Strength Steel Weld Metal Microstructures. Welding Journal, 68(4):158s–168s P. T. Oldland, C. W. Ramsay, D. K. Matlock, and D. L. Olsen, 1989. Significant Features of High-Strength Steel Weld Metal Microstructures. Welding Journal, 68(4):158s–168s
17.
Zurück zum Zitat Welding Handbook, 1989. Kobe Steel, Ltd. Welding Division, Chiyoda-Ku, Tokyo, Japan, p 160–161 Welding Handbook, 1989. Kobe Steel, Ltd. Welding Division, Chiyoda-Ku, Tokyo, Japan, p 160–161
19.
Zurück zum Zitat D. Begg, Evaluation of Variable Balance AC Submerged Arc Welding and Metal-cored Electrode Technology for Panel Welding, BMT Fleet Technology Limited, Kanata, ON, Canada, K2K 1Z8, 2006 D. Begg, Evaluation of Variable Balance AC Submerged Arc Welding and Metal-cored Electrode Technology for Panel Welding, BMT Fleet Technology Limited, Kanata, ON, Canada, K2K 1Z8, 2006
20.
Zurück zum Zitat Navy Ships: Lessons of Prior Programs May Reduce New Attack Submarine Cost Increases and Delays, GAO/NSIAD-95-4, United States General Accounting Office GAO Report to Congressional Requesters, p 7, October 1994 Navy Ships: Lessons of Prior Programs May Reduce New Attack Submarine Cost Increases and Delays, GAO/NSIAD-95-4, United States General Accounting Office GAO Report to Congressional Requesters, p 7, October 1994
21.
Zurück zum Zitat K. Sampath, 2005. Strengthening Materials Specifications. Journal of Materials Engineering and Performance, 14(5):596–603CrossRef K. Sampath, 2005. Strengthening Materials Specifications. Journal of Materials Engineering and Performance, 14(5):596–603CrossRef
Metadaten
Titel
Metallurgical Design of High-Performance GMAW Electrodes for Joining HSLA-65 Steel
verfasst von
V. Sampath
J. Kehl II
C. Vizza
R. Varadan
K. Sampath
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2008
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-008-9236-2

Weitere Artikel der Ausgabe 6/2008

Journal of Materials Engineering and Performance 6/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.