Skip to main content

2016 | OriginalPaper | Buchkapitel

Metamaterials and Antennas

verfasst von : Richard W. Ziolkowski

Erschienen in: Handbook of Antenna Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A variety of antennas have been engineered with metamaterials and metamaterial-inspired constructs to improve their performance characteristics. Interesting examples include electrically small, near-field resonant parasitic (NFRP) antennas that require no matching network and have high radiation efficiencies. Experimental verification of their predicted behaviors has been obtained. This NFRP electrically small paradigm has led to a wide variety of multiband and multifunctional antenna systems. The introduction of active metamaterial constructs further augments the antenna designer’s toolbox and leads to systems with many interesting and useful properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aberle JT, Loepsinger-Romak R (2007) Antenna with non-foster matching networks. Morgan & Claypool Publishers, San Rafael Aberle JT, Loepsinger-Romak R (2007) Antenna with non-foster matching networks. Morgan & Claypool Publishers, San Rafael
Zurück zum Zitat Alici KB, Ozbay E (2007) Radiation properties of a split ring resonator and monopole composite. Phys Stat Sol (b) 244:1192–1196CrossRef Alici KB, Ozbay E (2007) Radiation properties of a split ring resonator and monopole composite. Phys Stat Sol (b) 244:1192–1196CrossRef
Zurück zum Zitat Alú A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55:13–25CrossRef Alú A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55:13–25CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2008) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Ant Wireless Propag Lett 7:425–428CrossRef Antoniades MA, Eleftheriades GV (2008) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Ant Wireless Propag Lett 7:425–428CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Ant Wireless Propag Lett 8:258–261CrossRef Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Ant Wireless Propag Lett 8:258–261CrossRef
Zurück zum Zitat Arslanagić S, Ziolkowski RW, Breinbjerg O (2007) Radiation properties of an electric Hertzian dipole located near-by concentric metamaterial spheres. Rad Sci 42:RS6S16 Arslanagić S, Ziolkowski RW, Breinbjerg O (2007) Radiation properties of an electric Hertzian dipole located near-by concentric metamaterial spheres. Rad Sci 42:RS6S16
Zurück zum Zitat Arslanagić S, Ziolkowski RW (2010) Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole – resonance and transparency effects. J Opt 12:024014CrossRef Arslanagić S, Ziolkowski RW (2010) Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole – resonance and transparency effects. J Opt 12:024014CrossRef
Zurück zum Zitat Arslanagić S, Ziolkowski RW (2012) Directive properties of active coated nano-particles. Advance Electromagn 1:57–64CrossRef Arslanagić S, Ziolkowski RW (2012) Directive properties of active coated nano-particles. Advance Electromagn 1:57–64CrossRef
Zurück zum Zitat Arslanagić S, Ziolkowski RW (2013) Jamming of quantum emitters by active coated nano-particles. IEEE J Sel Topics Quantum Electron 19:4800506CrossRef Arslanagić S, Ziolkowski RW (2013) Jamming of quantum emitters by active coated nano-particles. IEEE J Sel Topics Quantum Electron 19:4800506CrossRef
Zurück zum Zitat Arslanagić S, Ziolkowski RW (2014) Influence of active nano particle size and material composition on multiple quantum emitter enhancements: their enhancement and jamming effects. Prog Electromagn Res 149:85–99CrossRef Arslanagić S, Ziolkowski RW (2014) Influence of active nano particle size and material composition on multiple quantum emitter enhancements: their enhancement and jamming effects. Prog Electromagn Res 149:85–99CrossRef
Zurück zum Zitat Best SR (2004) The radiation properties of electrically small folded spherical helix antennas. IEEE Trans Antennas Propag 52:953–960CrossRef Best SR (2004) The radiation properties of electrically small folded spherical helix antennas. IEEE Trans Antennas Propag 52:953–960CrossRef
Zurück zum Zitat Best SR (2005) Low Q electrically small linear and elliptical polarized spherical dipole antennas. IEEE Trans Antennas Propag 53:1047–1053CrossRef Best SR (2005) Low Q electrically small linear and elliptical polarized spherical dipole antennas. IEEE Trans Antennas Propag 53:1047–1053CrossRef
Zurück zum Zitat Best SR (2009) A low Q electrically small magnetic (TE mode) dipole. IEEE Ant Wireless Propag Lett 8:572–575CrossRef Best SR (2009) A low Q electrically small magnetic (TE mode) dipole. IEEE Ant Wireless Propag Lett 8:572–575CrossRef
Zurück zum Zitat Bilotti F, Alú A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56:1640–1647CrossRef Bilotti F, Alú A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56:1640–1647CrossRef
Zurück zum Zitat Buell K, Mosallaei H, Sarabandi K (2006) A substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans Microw Theor Tech 54:135–146CrossRef Buell K, Mosallaei H, Sarabandi K (2006) A substrate for small patch antennas providing tunable miniaturization factors. IEEE Trans Microw Theor Tech 54:135–146CrossRef
Zurück zum Zitat Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley-IEEE, HobokenCrossRef Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley-IEEE, HobokenCrossRef
Zurück zum Zitat Caloz C, Itoh T, Rennings A (2008) CRLH traveling-wave and resonant metamaterial antennas. IEEE Ant Propag Mag 50:25–39CrossRef Caloz C, Itoh T, Rennings A (2008) CRLH traveling-wave and resonant metamaterial antennas. IEEE Ant Propag Mag 50:25–39CrossRef
Zurück zum Zitat Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19:1163–1175CrossRef Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19:1163–1175CrossRef
Zurück zum Zitat Dong Y, Itoh T (2012) Metamaterial-based antennas. Proc IEEE 100:2271–2285CrossRef Dong Y, Itoh T (2012) Metamaterial-based antennas. Proc IEEE 100:2271–2285CrossRef
Zurück zum Zitat Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials fundamental principles and applications. Wiley-IEEE, Hoboken Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials fundamental principles and applications. Wiley-IEEE, Hoboken
Zurück zum Zitat Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Ant Propag 1:12–22CrossRef Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Ant Propag 1:12–22CrossRef
Zurück zum Zitat Engheta N, Ziolkowski RW (2005) A positive future for double negative metamaterials. IEEE Microwav Theor Tech 53:1535–1556CrossRef Engheta N, Ziolkowski RW (2005) A positive future for double negative metamaterials. IEEE Microwav Theor Tech 53:1535–1556CrossRef
Zurück zum Zitat Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley-IEEE Press, Hoboken, NJ Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley-IEEE Press, Hoboken, NJ
Zurück zum Zitat Enoch S, Tayeb G, Sabouroux Gúerin PN, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 89:213902CrossRef Enoch S, Tayeb G, Sabouroux Gúerin PN, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 89:213902CrossRef
Zurück zum Zitat Erentok A, Luljak PL, Ziolkowski RW (2005) Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans Ant Propag 53:160–172CrossRef Erentok A, Luljak PL, Ziolkowski RW (2005) Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans Ant Propag 53:160–172CrossRef
Zurück zum Zitat Erentok A, Ziolkowski RW (2007a) A hybrid optimization method to analyze metamaterial-based electrically small antennas. IEEE Trans Ant Propag 55:731–741CrossRef Erentok A, Ziolkowski RW (2007a) A hybrid optimization method to analyze metamaterial-based electrically small antennas. IEEE Trans Ant Propag 55:731–741CrossRef
Zurück zum Zitat Erentok A, Ziolkowski RW (2007b) An efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1287–1290CrossRef Erentok A, Ziolkowski RW (2007b) An efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1287–1290CrossRef
Zurück zum Zitat Erentok A, Ziolkowski RW (2007c) Two-dimensional efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1669–1673CrossRef Erentok A, Ziolkowski RW (2007c) Two-dimensional efficient metamaterial-inspired electrically-small antenna. Microw Opt Tech Lett 49:1669–1673CrossRef
Zurück zum Zitat Erentok A, Lee D, Ziolkowski RW (2007d) Numerical analysis of a printed dipole antenna integrated with a 3D AMC block. IEEE Ant Wireless Propag Lett 6:134–136CrossRef Erentok A, Lee D, Ziolkowski RW (2007d) Numerical analysis of a printed dipole antenna integrated with a 3D AMC block. IEEE Ant Wireless Propag Lett 6:134–136CrossRef
Zurück zum Zitat Erentok A, Ziolkowski RW, Nielsen JA, Greegor RB, Parazzoli CG, Tanielian MH, Cummer SA, Popa BI, Hand T, Vier DC, Schultz S (2007b) Low frequency lumped element-based negative index metamaterial. Appl Phys Lett 91:184104CrossRef Erentok A, Ziolkowski RW, Nielsen JA, Greegor RB, Parazzoli CG, Tanielian MH, Cummer SA, Popa BI, Hand T, Vier DC, Schultz S (2007b) Low frequency lumped element-based negative index metamaterial. Appl Phys Lett 91:184104CrossRef
Zurück zum Zitat Erentok A, Ziolkowski RW (2008) Metamaterial-inspired efficient electrically-small antennas. IEEE Trans Ant Propag 56:691–707CrossRef Erentok A, Ziolkowski RW (2008) Metamaterial-inspired efficient electrically-small antennas. IEEE Trans Ant Propag 56:691–707CrossRef
Zurück zum Zitat Franson SJ, Ziolkowski RW (2009) Confirmation of zero-N behavior in a high gain grid structure at millimeter-wave frequencies. IEEE Ant Wireless Propag Lett 8:387–390CrossRef Franson SJ, Ziolkowski RW (2009) Confirmation of zero-N behavior in a high gain grid structure at millimeter-wave frequencies. IEEE Ant Wireless Propag Lett 8:387–390CrossRef
Zurück zum Zitat Geng J, Ziolkowski RW, Jin R, Liang X (2011) Numerical study of active open cylindrical coated nano-particle antennas. IEEE Photon 3:1093–1110CrossRef Geng J, Ziolkowski RW, Jin R, Liang X (2011) Numerical study of active open cylindrical coated nano-particle antennas. IEEE Photon 3:1093–1110CrossRef
Zurück zum Zitat Geng J, Ziolkowski RW, Jin R, Liang X (2012) Detailed performance characteristics of vertically polarized, cylindrical, active coated nano-particle antennas. Rad Sci 47, RS2013CrossRef Geng J, Ziolkowski RW, Jin R, Liang X (2012) Detailed performance characteristics of vertically polarized, cylindrical, active coated nano-particle antennas. Rad Sci 47, RS2013CrossRef
Zurück zum Zitat Geng J, Jin R, Liang X, Ziolkowski RW (2013) Active cylindrical coated nano-particle antennas: polarization-dependent scattering properties. J Electromagnet Wave Appl (JEMWA). doi:10.1080/09205071.2013.809669 Geng J, Jin R, Liang X, Ziolkowski RW (2013) Active cylindrical coated nano-particle antennas: polarization-dependent scattering properties. J Electromagnet Wave Appl (JEMWA). doi:10.1080/09205071.2013.809669
Zurück zum Zitat Gordon JA, Ziolkowski RW (2007) The design and simulated performance of a coated nano-particle laser. Opt Express 15:2622–2653CrossRef Gordon JA, Ziolkowski RW (2007) The design and simulated performance of a coated nano-particle laser. Opt Express 15:2622–2653CrossRef
Zurück zum Zitat Gordon JA, Ziolkowski RW (2008) CNP optical metamaterials. Opt Express 16:6692–6716CrossRef Gordon JA, Ziolkowski RW (2008) CNP optical metamaterials. Opt Express 16:6692–6716CrossRef
Zurück zum Zitat Greegor RB, Parazzoli CG, Nielsen JA, Tanielian MH, Vier DC, Schultz S, Holloway CL, Ziolkowski RW (2009) Demonstration of impedance matching using a mu-negative (MNG) metamaterial. IEEE Ant Wireless Propag Lett 8:92–95CrossRef Greegor RB, Parazzoli CG, Nielsen JA, Tanielian MH, Vier DC, Schultz S, Holloway CL, Ziolkowski RW (2009) Demonstration of impedance matching using a mu-negative (MNG) metamaterial. IEEE Ant Wireless Propag Lett 8:92–95CrossRef
Zurück zum Zitat Gustafsson M, Sohl C, Kristensson G (2009) Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans Antennas Propag 57:1319–1327CrossRef Gustafsson M, Sohl C, Kristensson G (2009) Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans Antennas Propag 57:1319–1327CrossRef
Zurück zum Zitat Herraiz-Martnez J, Garca-Muoz LE, Gonzlez-Ovejero D, Gonzlez-Posadas V, Segovia-Vargas D (2009) Dual-frequency printed dipole loaded with split ring resonators. IEEE Ant Wireless Propag Lett 8:137–140CrossRef Herraiz-Martnez J, Garca-Muoz LE, Gonzlez-Ovejero D, Gonzlez-Posadas V, Segovia-Vargas D (2009) Dual-frequency printed dipole loaded with split ring resonators. IEEE Ant Wireless Propag Lett 8:137–140CrossRef
Zurück zum Zitat Ikonen PMT, Alitalo P, Tretyakov SA (2007) On impedance bandwidth of resonant patch antennas implemented using structures with engineered dispersion. IEEE Ant Wireless Propag Lett 6:186–190CrossRef Ikonen PMT, Alitalo P, Tretyakov SA (2007) On impedance bandwidth of resonant patch antennas implemented using structures with engineered dispersion. IEEE Ant Wireless Propag Lett 6:186–190CrossRef
Zurück zum Zitat Imhof PD, Ziolkowski RW, Mosig JR (2006) Highly isotropic, low loss epsilon negative (ENG) unit cells at UHF frequencies. In: Proc European conference on antennas and propagation, EuCAP2006, European Space Agency, Noordwijk, The Netherlands, ESA SP-626, pp 552 Imhof PD, Ziolkowski RW, Mosig JR (2006) Highly isotropic, low loss epsilon negative (ENG) unit cells at UHF frequencies. In: Proc European conference on antennas and propagation, EuCAP2006, European Space Agency, Noordwijk, The Netherlands, ESA SP-626, pp 552
Zurück zum Zitat Imhof PD (2006) Metamaterial-based epsilon negative (ENG) media: analysis and designs. Ecole Polytechnique Fédérale de Lausanne (EPFL) Master Thesis, Lausanne, Switzerland Imhof PD (2006) Metamaterial-based epsilon negative (ENG) media: analysis and designs. Ecole Polytechnique Fédérale de Lausanne (EPFL) Master Thesis, Lausanne, Switzerland
Zurück zum Zitat Jin P, Ziolkowski RW (2009) Low Q, electrically small, efficient near field resonant parasitic antennas. IEEE Trans Ant Propag 57:2548–2563CrossRef Jin P, Ziolkowski RW (2009) Low Q, electrically small, efficient near field resonant parasitic antennas. IEEE Trans Ant Propag 57:2548–2563CrossRef
Zurück zum Zitat Jin P, Ziolkowski RW (2010a) Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans Ant Propag 58:318–327CrossRef Jin P, Ziolkowski RW (2010a) Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans Ant Propag 58:318–327CrossRef
Zurück zum Zitat Jin P, Ziolkowski RW (2010b) Metamaterial-inspired, electrically small Huygens sources. IEEE Ant Wireless Propag Lett 9:501–505CrossRef Jin P, Ziolkowski RW (2010b) Metamaterial-inspired, electrically small Huygens sources. IEEE Ant Wireless Propag Lett 9:501–505CrossRef
Zurück zum Zitat Jin P, Ziolkowski RW (2010c) Multiband extensions of the electrically small metamaterial-engineered Z antenna. IET Microwav Ant Propag 4:1016–1025CrossRef Jin P, Ziolkowski RW (2010c) Multiband extensions of the electrically small metamaterial-engineered Z antenna. IET Microwav Ant Propag 4:1016–1025CrossRef
Zurück zum Zitat Jin P, Ziolkowski RW (2011) Multi-frequency, linear and circular polarized, metamaterial-inspired near-field resonant parasitic antennas. IEEE Trans Ant Propag 59:1446–1459CrossRef Jin P, Ziolkowski RW (2011) Multi-frequency, linear and circular polarized, metamaterial-inspired near-field resonant parasitic antennas. IEEE Trans Ant Propag 59:1446–1459CrossRef
Zurück zum Zitat Jin P, Lin CC, Ziolkowski RW (2012) Multifunctional, electrically small, conformal near-field resonant parasitic antennas. IEEE Ant Wireless Propag Lett 11:200–204CrossRef Jin P, Lin CC, Ziolkowski RW (2012) Multifunctional, electrically small, conformal near-field resonant parasitic antennas. IEEE Ant Wireless Propag Lett 11:200–204CrossRef
Zurück zum Zitat Kim OS, Breinbjerg O (2009) Miniaturized self-resonant split-ring resonator antenna. Electronics Lett 45:196–197CrossRef Kim OS, Breinbjerg O (2009) Miniaturized self-resonant split-ring resonator antenna. Electronics Lett 45:196–197CrossRef
Zurück zum Zitat Kim OS, Breinbjerg O, Yaghjian AD (2010) Electrically small magnetic dipole antennas with quality factors approaching the Chu lower bound. IEEE Trans Ant Propag 58:1898–1906CrossRef Kim OS, Breinbjerg O, Yaghjian AD (2010) Electrically small magnetic dipole antennas with quality factors approaching the Chu lower bound. IEEE Trans Ant Propag 58:1898–1906CrossRef
Zurück zum Zitat Kim OS (2010) Low-Q electrically small spherical magnetic dipole antennas. IEEE Trans Ant Propag 58:2210–2217CrossRef Kim OS (2010) Low-Q electrically small spherical magnetic dipole antennas. IEEE Trans Ant Propag 58:2210–2217CrossRef
Zurück zum Zitat Lai A, Leong MKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Ant Propag 55:868–876CrossRef Lai A, Leong MKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Ant Propag 55:868–876CrossRef
Zurück zum Zitat Lee DH, Chauraya A, Vardaxoglou Y, Park WS (2008) A compact and low-profile tunable loop antenna integrated with inductors. IEEE Ant Wireless Propag Lett 7:621–624CrossRef Lee DH, Chauraya A, Vardaxoglou Y, Park WS (2008) A compact and low-profile tunable loop antenna integrated with inductors. IEEE Ant Wireless Propag Lett 7:621–624CrossRef
Zurück zum Zitat Liberal I, Ederra I, Gonzalo R, Ziolkowski RW (2014) Induction theorem analysis of resonant nanoparticles: design of a Huygens source nanoparticle laser. Phys Rev Appl 1:044002CrossRef Liberal I, Ederra I, Gonzalo R, Ziolkowski RW (2014) Induction theorem analysis of resonant nanoparticles: design of a Huygens source nanoparticle laser. Phys Rev Appl 1:044002CrossRef
Zurück zum Zitat Lin CC, Ziolkowski RW, Nielsen JA, Tanielian MH, Holloway CL (2010) An efficient, low profile, electrically small, VHF 3D magnetic EZ antenna. Appl Phys Lett 96:104102CrossRef Lin CC, Ziolkowski RW, Nielsen JA, Tanielian MH, Holloway CL (2010) An efficient, low profile, electrically small, VHF 3D magnetic EZ antenna. Appl Phys Lett 96:104102CrossRef
Zurück zum Zitat Lin CC, Ziolkowski RW (2010) Dual-band 3D magnetic EZ antenna. Microw Opt Tech Lett 52:971–975CrossRef Lin CC, Ziolkowski RW (2010) Dual-band 3D magnetic EZ antenna. Microw Opt Tech Lett 52:971–975CrossRef
Zurück zum Zitat Lin CC, Jin P, Ziolkowski RW (2011) Electrically small dual-band and circularly polarized magnetically-coupled near-field resonant parasitic wire antennas. IEEE Trans Ant Propag 59:714–724CrossRef Lin CC, Jin P, Ziolkowski RW (2011) Electrically small dual-band and circularly polarized magnetically-coupled near-field resonant parasitic wire antennas. IEEE Trans Ant Propag 59:714–724CrossRef
Zurück zum Zitat Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41:725–729CrossRef Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41:725–729CrossRef
Zurück zum Zitat Martinez A, Piqueras MA, Marti J (2006) Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Appl Phys Lett 89:131111CrossRef Martinez A, Piqueras MA, Marti J (2006) Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Appl Phys Lett 89:131111CrossRef
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2013) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Ant Propag 61:5363–5371CrossRef Mirzaei H, Eleftheriades GV (2013) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Ant Propag 61:5363–5371CrossRef
Zurück zum Zitat Mumcu G, Sertel K, Volakis JL (2009) Miniature antenna using printed coupled lines emulating degenerate band edge crystals. IEEE Trans Ant Propag 57:1618–1624CrossRef Mumcu G, Sertel K, Volakis JL (2009) Miniature antenna using printed coupled lines emulating degenerate band edge crystals. IEEE Trans Ant Propag 57:1618–1624CrossRef
Zurück zum Zitat Park J-H, Ryu YH, Lee JG, Lee JH (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Ant Propag 55:3710–3712CrossRef Park J-H, Ryu YH, Lee JG, Lee JH (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Ant Propag 55:3710–3712CrossRef
Zurück zum Zitat Qureshi F, Antoniades MA, Eleftheriades GV (2005) Compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Ant Wireless Propag Lett 4:333–336CrossRef Qureshi F, Antoniades MA, Eleftheriades GV (2005) Compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Ant Wireless Propag Lett 4:333–336CrossRef
Zurück zum Zitat Sáenz E, Gonzalo R, Ederra I, Vardaxoglou JC, de Maagt P (2008) Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays. IEEE Trans Ant Propag 56:951–960CrossRef Sáenz E, Gonzalo R, Ederra I, Vardaxoglou JC, de Maagt P (2008) Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays. IEEE Trans Ant Propag 56:951–960CrossRef
Zurück zum Zitat Sanada A, Kimura M, Awai I, Caloz C, Itoh T (2004) A planar zeroth-order resonator antenna using a left-handed transmission line. In: Proc. 34th European Microwave Conference, Amsterdam, The Netherlands, pp 1341–1344 Sanada A, Kimura M, Awai I, Caloz C, Itoh T (2004) A planar zeroth-order resonator antenna using a left-handed transmission line. In: Proc. 34th European Microwave Conference, Amsterdam, The Netherlands, pp 1341–1344
Zurück zum Zitat Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRef Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRef
Zurück zum Zitat Stuart HR, Tran C (2005) Subwavelength microwave resonators exhibiting strong coupling to radiation modes. Appl Phys Lett 87:151108CrossRef Stuart HR, Tran C (2005) Subwavelength microwave resonators exhibiting strong coupling to radiation modes. Appl Phys Lett 87:151108CrossRef
Zurück zum Zitat Stuart HR, Pidwerbetsky A (2006) Electrically small antenna elements using negative permittivity resonators. IEEE Trans Ant Propag 54:1664–1653CrossRef Stuart HR, Pidwerbetsky A (2006) Electrically small antenna elements using negative permittivity resonators. IEEE Trans Ant Propag 54:1664–1653CrossRef
Zurück zum Zitat Stuart HR, Tran C (2007) Small spherical antennas using arrays of electromagnetically coupled planar elements. IEEE Ant Wireless Propag Lett 6:7–10CrossRef Stuart HR, Tran C (2007) Small spherical antennas using arrays of electromagnetically coupled planar elements. IEEE Ant Wireless Propag Lett 6:7–10CrossRef
Zurück zum Zitat Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Ant Propag 57:2230–2241CrossRef Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Ant Propag 57:2230–2241CrossRef
Zurück zum Zitat Ta SX, Park I, Ziolkowski RW (2012) Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications. Electronic Lett 48:1580–1581CrossRef Ta SX, Park I, Ziolkowski RW (2012) Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications. Electronic Lett 48:1580–1581CrossRef
Zurück zum Zitat Ta SX, Park I, Ziolkowski RW (2013a) Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications. IEEE Ant Wireless Propag Lett 12:1464–1467CrossRef Ta SX, Park I, Ziolkowski RW (2013a) Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications. IEEE Ant Wireless Propag Lett 12:1464–1467CrossRef
Zurück zum Zitat Ta SX, Park I, Ziolkowski RW (2013b) Multi-band, wide-beam, circularly polarized, crossed asymmetrically barbed arrowhead dipole antenna for GPS applications. IEEE Trans Ant Propag 61:5771–5775CrossRef Ta SX, Park I, Ziolkowski RW (2013b) Multi-band, wide-beam, circularly polarized, crossed asymmetrically barbed arrowhead dipole antenna for GPS applications. IEEE Trans Ant Propag 61:5771–5775CrossRef
Zurück zum Zitat Ta SX, Han JJ, Park I, Ziolkowski RW (2013c) Wide-beam circularly polarized crossed scythe-shaped dipoles for global navigation satellite systems. J Electromagn Eng Sci 13:224–232CrossRef Ta SX, Han JJ, Park I, Ziolkowski RW (2013c) Wide-beam circularly polarized crossed scythe-shaped dipoles for global navigation satellite systems. J Electromagn Eng Sci 13:224–232CrossRef
Zurück zum Zitat Tang MC, Zhu N, Ziolkowski RW (2013) Augmenting a modified Egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth. IEEE Ant Wireless Propag Lett 12:421–424CrossRef Tang MC, Zhu N, Ziolkowski RW (2013) Augmenting a modified Egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth. IEEE Ant Wireless Propag Lett 12:421–424CrossRef
Zurück zum Zitat Thal H (2006) New radiation Q limits for spherical wire antennas. IEEE Trans Ant Propag 54:2757–2763CrossRef Thal H (2006) New radiation Q limits for spherical wire antennas. IEEE Trans Ant Propag 54:2757–2763CrossRef
Zurück zum Zitat Veselago VG (1968) Experimental demonstration of negative index of refraction. Sov Phys Usp 47:509–514CrossRef Veselago VG (1968) Experimental demonstration of negative index of refraction. Sov Phys Usp 47:509–514CrossRef
Zurück zum Zitat White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Ant Wireless Propag Lett 21:584–587CrossRef White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Ant Wireless Propag Lett 21:584–587CrossRef
Zurück zum Zitat Wu BI, Wang W, Pacheco J, Chen X, Grzegorczyk T, Kong JA (2005) A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetics Research, PIER 51, EMW Publishing, Cambridge, MA, pp 295–328 Wu BI, Wang W, Pacheco J, Chen X, Grzegorczyk T, Kong JA (2005) A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetics Research, PIER 51, EMW Publishing, Cambridge, MA, pp 295–328
Zurück zum Zitat Yaghjian AD, Best SR (2005) Impedance, bandwidth, and Q of antennas. IEEE Trans Ant Propag 53:1298–1324CrossRef Yaghjian AD, Best SR (2005) Impedance, bandwidth, and Q of antennas. IEEE Trans Ant Propag 53:1298–1324CrossRef
Zurück zum Zitat Yaghjian AD, Stewart HR (2010) Lower bounds on the Q of electrically small dipole antennas. IEEE Trans Ant Propag 58:3114–3121CrossRef Yaghjian AD, Stewart HR (2010) Lower bounds on the Q of electrically small dipole antennas. IEEE Trans Ant Propag 58:3114–3121CrossRef
Zurück zum Zitat Yang F, Rahmat-Samii Y (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, New York Yang F, Rahmat-Samii Y (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, New York
Zurück zum Zitat Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Ant Propag 244:1031–1038 Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Ant Propag 244:1031–1038
Zurück zum Zitat Zhu N, Ziolkowski RW (2011) Active metamaterial-inspired broad bandwidth, efficient, electrically small antennas. IEEE Ant Wireless Propag Lett 10:1582–1585CrossRef Zhu N, Ziolkowski RW (2011) Active metamaterial-inspired broad bandwidth, efficient, electrically small antennas. IEEE Ant Wireless Propag Lett 10:1582–1585CrossRef
Zurück zum Zitat Zhu N, Ziolkowski RW (2012a) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101:024107CrossRef Zhu N, Ziolkowski RW (2012a) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101:024107CrossRef
Zurück zum Zitat Zhu N, Ziolkowski RW (2012b) Broad bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Ant Wireless Propag Lett 11:1116–1120CrossRef Zhu N, Ziolkowski RW (2012b) Broad bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Ant Wireless Propag Lett 11:1116–1120CrossRef
Zurück zum Zitat Zhu N, Ziolkowski RW (2013) Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements. IEICE Trans Commun E96-B:2399–2409CrossRef Zhu N, Ziolkowski RW (2013) Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements. IEICE Trans Commun E96-B:2399–2409CrossRef
Zurück zum Zitat Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Ant Propag 51:1516–1529CrossRef Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Ant Propag 51:1516–1529CrossRef
Zurück zum Zitat Ziolkowski RW, Kipple A (2003) Application of double negative metamaterial to increase the power radiated by electrically small antennas. IEEE Trans Ant Propag 51:2626–2640CrossRef Ziolkowski RW, Kipple A (2003) Application of double negative metamaterial to increase the power radiated by electrically small antennas. IEEE Trans Ant Propag 51:2626–2640CrossRef
Zurück zum Zitat Ziolkowski RW (2004) Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 70:046608CrossRef Ziolkowski RW (2004) Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 70:046608CrossRef
Zurück zum Zitat Ziolkowski RW, Kipple A (2005) Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells. Phys Rev E 72:036602CrossRef Ziolkowski RW, Kipple A (2005) Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells. Phys Rev E 72:036602CrossRef
Zurück zum Zitat Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Ant Propag 54:2113–2130CrossRef Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Ant Propag 54:2113–2130CrossRef
Zurück zum Zitat Ziolkowski RW, Erentok A (2007) At and beyond the Chu limit: passive and active broad bandwidth metamaterial-based efficient electrically small antennas. IET Microwav Ant Propag 1:116–128CrossRef Ziolkowski RW, Erentok A (2007) At and beyond the Chu limit: passive and active broad bandwidth metamaterial-based efficient electrically small antennas. IET Microwav Ant Propag 1:116–128CrossRef
Zurück zum Zitat Ziolkowski RW (2008a) An efficient, electrically small antenna designed for VHF and UHF applications. IEEE Ant Wireless Propag Lett 7:217–220CrossRef Ziolkowski RW (2008a) An efficient, electrically small antenna designed for VHF and UHF applications. IEEE Ant Wireless Propag Lett 7:217–220CrossRef
Zurück zum Zitat Ziolkowski RW (2008b) Efficient electrically small antenna facilitated by a near-field resonant parasitic. IEEE Ant Wireless Propag Lett 7:580–583 Ziolkowski RW (2008b) Efficient electrically small antenna facilitated by a near-field resonant parasitic. IEEE Ant Wireless Propag Lett 7:580–583
Zurück zum Zitat Ziolkowski RW, Jin P (2008) Metamaterial-based dispersion engineering to achieve phase center compensation in a log-periodic array. IEEE Trans Ant Propag 56:3619–3629CrossRef Ziolkowski RW, Jin P (2008) Metamaterial-based dispersion engineering to achieve phase center compensation in a log-periodic array. IEEE Trans Ant Propag 56:3619–3629CrossRef
Zurück zum Zitat Ziolkowski RW, Lin CC, Nielsen JA, Tanielian MH, Holloway CL (2009a) Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz. IEEE Ant Wireless Propag Lett 8:989–993CrossRef Ziolkowski RW, Lin CC, Nielsen JA, Tanielian MH, Holloway CL (2009a) Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz. IEEE Ant Wireless Propag Lett 8:989–993CrossRef
Zurück zum Zitat Ziolkowski RW, Jin P, Nielsen JA, Tanielian MH, Holloway CL (2009b) Design and experimental verification of Z antennas at UHF frequencies. IEEE Ant Wireless Propag Lett 8:1329–1333CrossRef Ziolkowski RW, Jin P, Nielsen JA, Tanielian MH, Holloway CL (2009b) Design and experimental verification of Z antennas at UHF frequencies. IEEE Ant Wireless Propag Lett 8:1329–1333CrossRef
Zurück zum Zitat Ziolkowski RW, Jin P, Lin CC (2011) Metamaterial-inspired engineering of antennas. Proc IEEE 99:1720–1731CrossRef Ziolkowski RW, Jin P, Lin CC (2011) Metamaterial-inspired engineering of antennas. Proc IEEE 99:1720–1731CrossRef
Zurück zum Zitat Ziolkowski RW, Tang MC, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Technol Lett 55:1430–1434CrossRef Ziolkowski RW, Tang MC, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Technol Lett 55:1430–1434CrossRef
Metadaten
Titel
Metamaterials and Antennas
verfasst von
Richard W. Ziolkowski
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-4560-44-3_14

Neuer Inhalt