Skip to main content
Erschienen in: Topics in Catalysis 18-20/2013

01.12.2013 | ORIGINAL PAPER

Methane Steam Reforming Kinetics on a Ni/Mg/K/Al2O3 Catalyst

verfasst von: Allison M. Robinson, Megan E. Gin, Matthew M. Yung

Erschienen in: Topics in Catalysis | Ausgabe 18-20/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The kinetics of methane steam reforming were studied on a Ni/Mg/K/Al2O3 catalyst that was developed for conditioning of biomass-derived syngas. Reactions were conducted in a packed-bed reactor while the concentrations of reactants (methane and steam) and products (hydrogen, carbon monoxide, and carbon dioxide) were varied at atmospheric pressure, with the effects of temperature (525–700 °C) and residence time also being investigated. A power law rate model was developed using nonlinear regression to provide a predictive capability for the rate of methane conversion over this catalyst, to be used for reactor design and technoeconomic analysis of process designs. In order to provide some mechanistic insight, and to compare this catalyst to other non-promoted Ni/Al2O3 catalysts reported in the literature, a reaction mechanism consisting of five elementary steps, using a Langmuir–Hinshelwood type approach, was also considered. These five steps included: (i) CH4 adsorption, (ii) H2O adsorption, (iii) surface reaction of adsorbed CH4 and H2O to form CO and H2, (iv) CO desorption, and (v) H2 desorption. Nonlinear regression was then used to fit each of the rate laws to the experimental data. From these results, the model that assumed CH4 adsorption to be the rate determining step provided the best fit of the experimental data. This finding is consistent with literature studies on non-promoted Ni/Al2O3 catalysts, in which methane adsorption has been proposed to be the rate determining step during catalytic methane steam reforming. Both the power rate laws and the rate law assuming CH4 adsorption to be the rate determining step can be used as predictive tools for determining methane conversion for a given set of process conditions. Additionally, a rate expression that assumed the rate was only a function of methane partial pressure was considered, namely, \(rate = k*P_{{CH_{4} }}\), where \(k = k_{0} *e^{{^{{ - {\text{Ea}}/{\text{RT}}}} }}\), with PCH4 in units of Torr. This first-order-methane rate expression fit the data well, yielding an apparent activation energy over this catalyst of Ea = 93 kJ/mol and the pre-exponential rate constant of k0 = 7.67 × 105 mol/(g-cat s Torr CH4).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yung MM, Jablonski WJ, Magrini-Bair KA (2009) Energy Fuels 23:1874–1887CrossRef Yung MM, Jablonski WJ, Magrini-Bair KA (2009) Energy Fuels 23:1874–1887CrossRef
2.
Zurück zum Zitat Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Groendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR, (May 2011) NREL Report No. TP-5100-51400, pp 1–187 Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Groendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR, (May 2011) NREL Report No. TP-5100-51400, pp 1–187
3.
Zurück zum Zitat Yung MM, Magrini-Bair KA, Parent YO, Carpenter DL, Feik CJ, Gaston KR, Pomeroy MD, Phillips SD (2010) Catal Lett 134:242–249CrossRef Yung MM, Magrini-Bair KA, Parent YO, Carpenter DL, Feik CJ, Gaston KR, Pomeroy MD, Phillips SD (2010) Catal Lett 134:242–249CrossRef
7.
Zurück zum Zitat Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) Appl Catal A 330:12–22CrossRef Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) Appl Catal A 330:12–22CrossRef
8.
9.
11.
Zurück zum Zitat Yung MM, Cheah S, Magrini-Bair KA, Kuhn JN (2012) ACS Catal 2:1363–1367CrossRef Yung MM, Cheah S, Magrini-Bair KA, Kuhn JN (2012) ACS Catal 2:1363–1367CrossRef
13.
Zurück zum Zitat Magrini-Bair KA, Jablonski WS, Parent YO, Yung MM (2012) Top Catal 55:209–217CrossRef Magrini-Bair KA, Jablonski WS, Parent YO, Yung MM (2012) Top Catal 55:209–217CrossRef
15.
Zurück zum Zitat Bartholomew CH, Farrauto, RJ (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley Bartholomew CH, Farrauto, RJ (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley
16.
Metadaten
Titel
Methane Steam Reforming Kinetics on a Ni/Mg/K/Al2O3 Catalyst
verfasst von
Allison M. Robinson
Megan E. Gin
Matthew M. Yung
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 18-20/2013
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0106-2

Weitere Artikel der Ausgabe 18-20/2013

Topics in Catalysis 18-20/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.