Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 2/2020

01.03.2020 | STABILITY

Method for Constructing Periodic Solutions of a Controlled Dynamic System with a Cylindrical Phase Space

verfasst von: L. A. Klimina

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a controlled mechanical system with one degree of freedom described by an angular coordinate. The system is under the action of conservative and nonconservative forces. It is assumed that a corresponding dynamic system has a variable parameter that describes the control-impact gain factor. An iterative numerical–analytical method designed to form autorotation modes with assigned properties is proposed. The conditions for the orbital stability of such modes are formulated. The proposed approach represents a modification of the Andronov–Pontryagin method and, as opposed to it, can be applied not only to systems close to Hamiltonian systems but also to a certain class of systems that do not contain a small parameter. An example of the method’s application to an aerodynamic pendulum model is presented. The ability to expand the method’s convergence domain by using the parameter-continuation procedure is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. A. Reshmin and F. L. Chernous’ko, “Time-optimal control of an inverted pendulum in the feedback form,” J. Comput. Syst. Sci. Int. 45, 383 (2006).MathSciNetMATHCrossRef C. A. Reshmin and F. L. Chernous’ko, “Time-optimal control of an inverted pendulum in the feedback form,” J. Comput. Syst. Sci. Int. 45, 383 (2006).MathSciNetMATHCrossRef
3.
Zurück zum Zitat A. D. Morozov and O. S. Kostromina, “On periodic perturbations of asymmetric Duffing-Van-der-Pol equation,” Int. J. Bifurc. Chaos 24, 1450061 (2014).MathSciNetMATHCrossRef A. D. Morozov and O. S. Kostromina, “On periodic perturbations of asymmetric Duffing-Van-der-Pol equation,” Int. J. Bifurc. Chaos 24, 1450061 (2014).MathSciNetMATHCrossRef
4.
Zurück zum Zitat A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter, Berlin, Boston, 2015).MATHCrossRef A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter, Berlin, Boston, 2015).MATHCrossRef
5.
Zurück zum Zitat A. Gasull, A. Geyer, and F. Mañosas, “On the number of limit cycles for perturbed pendulum equations,” J. Differ. Equat. 261, 2141–2167 (2016).MathSciNetMATHCrossRef A. Gasull, A. Geyer, and F. Mañosas, “On the number of limit cycles for perturbed pendulum equations,” J. Differ. Equat. 261, 2141–2167 (2016).MathSciNetMATHCrossRef
6.
Zurück zum Zitat L. Klimina, M. Dosaev, and Yu. Selyutskiy, “Asymptotic analysis of the mathematical model of a wind-powered vehicle,” Appl. Math. Model. 46, 691–697 (2017).MathSciNetMATHCrossRef L. Klimina, M. Dosaev, and Yu. Selyutskiy, “Asymptotic analysis of the mathematical model of a wind-powered vehicle,” Appl. Math. Model. 46, 691–697 (2017).MathSciNetMATHCrossRef
7.
Zurück zum Zitat M. Berci and G. Dimitriadis, “A combined multiple time scales and harmonic balance approach for the transient and steady-state response of nonlinear aeroelastic systems,” J. Fluids Struct. 80, 132–144 (2018).CrossRef M. Berci and G. Dimitriadis, “A combined multiple time scales and harmonic balance approach for the transient and steady-state response of nonlinear aeroelastic systems,” J. Fluids Struct. 80, 132–144 (2018).CrossRef
8.
Zurück zum Zitat A. B. Rostami and A. C. Fernandes, “Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow,” Commun. Nonlin. Sci. Numer. Simul. 56, 544–560 (2018).MathSciNetCrossRef A. B. Rostami and A. C. Fernandes, “Mathematical model and stability analysis of fluttering and autorotation of an articulated plate into a flow,” Commun. Nonlin. Sci. Numer. Simul. 56, 544–560 (2018).MathSciNetCrossRef
9.
Zurück zum Zitat Y. D. Selyutskiy, “On dynamics of an aeroelastic system with two degrees of freedom,” Appl. Math. Model. 67, 449–455 (2019).MathSciNetMATHCrossRef Y. D. Selyutskiy, “On dynamics of an aeroelastic system with two degrees of freedom,” Appl. Math. Model. 67, 449–455 (2019).MathSciNetMATHCrossRef
10.
Zurück zum Zitat A. C. Fernandes and A. B. Rostami, “Hydrokinetic energy harvesting by an innovative vertical axis current turbine,” Renewable Energy 81, 694–706 (2015).CrossRef A. C. Fernandes and A. B. Rostami, “Hydrokinetic energy harvesting by an innovative vertical axis current turbine,” Renewable Energy 81, 694–706 (2015).CrossRef
11.
Zurück zum Zitat C. Chen, D. H. Zanette, J. R. Guest, D. A. Czaplewski, and D. López, “Self-sustained micromechanical oscillator with linear feedback,” Phys. Rev. Lett. 117, 017203 (2016).CrossRef C. Chen, D. H. Zanette, J. R. Guest, D. A. Czaplewski, and D. López, “Self-sustained micromechanical oscillator with linear feedback,” Phys. Rev. Lett. 117, 017203 (2016).CrossRef
12.
Zurück zum Zitat B. Jia, A. Smallbone, H. Feng, G. Tian, Z. Zuo, and A. P. Roskilly, “A fast response free-piston engine generator numerical model for control applications,” Appl. Energy 162, 321–329 (2016).CrossRef B. Jia, A. Smallbone, H. Feng, G. Tian, Z. Zuo, and A. P. Roskilly, “A fast response free-piston engine generator numerical model for control applications,” Appl. Energy 162, 321–329 (2016).CrossRef
13.
Zurück zum Zitat M. Dosaev, L. Klimina, and Y. Selyutskiy, “Wind turbine based on antiparallel link mechanism,” New Trends Mechanism Mach. Sci. 43, 543–550 (2017).MATHCrossRef M. Dosaev, L. Klimina, and Y. Selyutskiy, “Wind turbine based on antiparallel link mechanism,” New Trends Mechanism Mach. Sci. 43, 543–550 (2017).MATHCrossRef
14.
Zurück zum Zitat M. Amabili, “Nonlinear damping in large-amplitude vibrations: modelling and experiments,” Nonlin. Dyn. 93, 1–14 (2018).CrossRef M. Amabili, “Nonlinear damping in large-amplitude vibrations: modelling and experiments,” Nonlin. Dyn. 93, 1–14 (2018).CrossRef
15.
Zurück zum Zitat S. Erlicher, A. Trovato, and P. Argoul, “Modeling the lateral pedestrian force on a rigid floor by a self-sustained oscillator,” Mech. Syst. Signal Process. 24, 1579–1604 (2010).CrossRef S. Erlicher, A. Trovato, and P. Argoul, “Modeling the lateral pedestrian force on a rigid floor by a self-sustained oscillator,” Mech. Syst. Signal Process. 24, 1579–1604 (2010).CrossRef
16.
Zurück zum Zitat Y. Aoustin and A. M. Formal’sky, “Control design for a biped: reference trajectory based on driven angles as functions of the undriven angle,” J. Comput. Syst. Sci. Int. 42, 645–662 (2003).MATH Y. Aoustin and A. M. Formal’sky, “Control design for a biped: reference trajectory based on driven angles as functions of the undriven angle,” J. Comput. Syst. Sci. Int. 42, 645–662 (2003).MATH
17.
Zurück zum Zitat C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu, The Fitz Hugh-Nagumo Model: Bifurcation and Dynamics (Springer Science, New York, 2012).MATH C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu, The Fitz Hugh-Nagumo Model: Bifurcation and Dynamics (Springer Science, New York, 2012).MATH
18.
Zurück zum Zitat A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, The Theory of Bifurcations of Dynamical Systems on the Plane (Nauka, Moscow, 1967) [in Russian]. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, The Theory of Bifurcations of Dynamical Systems on the Plane (Nauka, Moscow, 1967) [in Russian].
19.
20.
Zurück zum Zitat D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, “Hidden attractors in dynamical systems,” Phys. Rep. 637, 1–50 (2016).MathSciNetMATHCrossRef D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, “Hidden attractors in dynamical systems,” Phys. Rep. 637, 1–50 (2016).MathSciNetMATHCrossRef
21.
Zurück zum Zitat L. Renson, G. Kerschen, and B. Cochelin, “Numerical computation of nonlinear normal modes in mechanical engineering,” J. Sound Vibrat. 364, 177–206 (2016).CrossRef L. Renson, G. Kerschen, and B. Cochelin, “Numerical computation of nonlinear normal modes in mechanical engineering,” J. Sound Vibrat. 364, 177–206 (2016).CrossRef
22.
Zurück zum Zitat D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and Y. A. Kuznetsov, “Numerical computation of bifurcations in large equilibrium systems in Matlab,” J. Comput. Appl. Math. 261, 232–248 (2014).MathSciNetMATHCrossRef D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and Y. A. Kuznetsov, “Numerical computation of bifurcations in large equilibrium systems in Matlab,” J. Comput. Appl. Math. 261, 232–248 (2014).MathSciNetMATHCrossRef
23.
Zurück zum Zitat T. Monovasilis, Z. Kalogiratou, H. Ramos, and T. E. Simos, “Modified two-step hybrid methods for the numerical integration of oscillatory problems,” Math. Methods Appl. Sci. 40, 5286–5294 (2017).MathSciNetMATHCrossRef T. Monovasilis, Z. Kalogiratou, H. Ramos, and T. E. Simos, “Modified two-step hybrid methods for the numerical integration of oscillatory problems,” Math. Methods Appl. Sci. 40, 5286–5294 (2017).MathSciNetMATHCrossRef
24.
Zurück zum Zitat B. Delamotte, “Nonperturbative (but approximate) method for solving differential equations and finding limit cycles,” Phys. Rev. Lett. 70, 3361 (1993).MathSciNetMATHCrossRef B. Delamotte, “Nonperturbative (but approximate) method for solving differential equations and finding limit cycles,” Phys. Rev. Lett. 70, 3361 (1993).MathSciNetMATHCrossRef
25.
Zurück zum Zitat J. H. He, “Determination of limit cycles for strongly nonlinear oscillators,” Phys. Rev. Lett. 90, 174301 (2003).CrossRef J. H. He, “Determination of limit cycles for strongly nonlinear oscillators,” Phys. Rev. Lett. 90, 174301 (2003).CrossRef
26.
Zurück zum Zitat J. H. He, “Limit cycle and bifurcation of nonlinear problems,” Chaos, Solitons Fractals 26, 827–833 (2005).MATHCrossRef J. H. He, “Limit cycle and bifurcation of nonlinear problems,” Chaos, Solitons Fractals 26, 827–833 (2005).MATHCrossRef
27.
Zurück zum Zitat G. A. Leonov, “Efficient methods in the search for periodic oscillations in dynamical systems,” J. Appl. Math. Mech. 74, 24–50 (2010).MathSciNetMATHCrossRef G. A. Leonov, “Efficient methods in the search for periodic oscillations in dynamical systems,” J. Appl. Math. Mech. 74, 24–50 (2010).MathSciNetMATHCrossRef
28.
Zurück zum Zitat M. Momeni, N. Jamshidi, A. Barari, and D. D. Ganji, “Application of He’s energy balance method to duffing-harmonic oscillators,” Int. J. Comput. Math. 88, 135–144 (2011).MathSciNetMATHCrossRef M. Momeni, N. Jamshidi, A. Barari, and D. D. Ganji, “Application of He’s energy balance method to duffing-harmonic oscillators,” Int. J. Comput. Math. 88, 135–144 (2011).MathSciNetMATHCrossRef
29.
Zurück zum Zitat V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).MathSciNetMATHCrossRef V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits,” J. Comput. Syst. Sci. Int. 50, 511 (2011).MathSciNetMATHCrossRef
30.
Zurück zum Zitat A. A. Klimenko, Y. V. Mikhlin, and J. Awrejcewicz, “Nonlinear normal modes in pendulum systems,” Nonlin. Dyn. 70, 797–813 (2012).MathSciNetMATHCrossRef A. A. Klimenko, Y. V. Mikhlin, and J. Awrejcewicz, “Nonlinear normal modes in pendulum systems,” Nonlin. Dyn. 70, 797–813 (2012).MathSciNetMATHCrossRef
31.
Zurück zum Zitat G. A. Leonov and N. V. Kuznetsov, “Hidden oscillations in dynamical systems. 16 Hilbert’s problem, Aizerman’s and Kalman’s conjectures, hidden attractors in Chua’s circuits,” J. Math. Sci. 201, 645–662 (2014).MathSciNetMATHCrossRef G. A. Leonov and N. V. Kuznetsov, “Hidden oscillations in dynamical systems. 16 Hilbert’s problem, Aizerman’s and Kalman’s conjectures, hidden attractors in Chua’s circuits,” J. Math. Sci. 201, 645–662 (2014).MathSciNetMATHCrossRef
32.
Zurück zum Zitat A. P. Lewis, “Refined analytical approximations to limit cycles for non-linear multi-degree-of-freedom systems,” Int. J. Non-Lin. Mech. 110, 58–68 (2019). A. P. Lewis, “Refined analytical approximations to limit cycles for non-linear multi-degree-of-freedom systems,” Int. J. Non-Lin. Mech. 110, 58–68 (2019).
33.
Zurück zum Zitat A. Buonomo and A. L. Schiavo, “A constructive method for finding the periodic response of nonlinear circuits,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 885–893 (2003).MathSciNetMATHCrossRef A. Buonomo and A. L. Schiavo, “A constructive method for finding the periodic response of nonlinear circuits,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 885–893 (2003).MathSciNetMATHCrossRef
34.
Zurück zum Zitat L. Cesari and J. K. Hale, “A new sufficient condition for periodic solutions of weakly nonlinear differential systems,” Proc. Am. Math. Soc. 8, 757–764 (1957).MathSciNetMATHCrossRef L. Cesari and J. K. Hale, “A new sufficient condition for periodic solutions of weakly nonlinear differential systems,” Proc. Am. Math. Soc. 8, 757–764 (1957).MathSciNetMATHCrossRef
35.
Zurück zum Zitat A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (04), 82–93 (1965).CrossRef A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (04), 82–93 (1965).CrossRef
36.
Zurück zum Zitat M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new trends of development. IV,” Ukr. Math. J. 50, 1888–1907 (1998).MATHCrossRef M. I. Rontó, A. M. Samoilenko, and S. I. Trofimchuk, “The theory of the numerical-analytic method: achievements and new trends of development. IV,” Ukr. Math. J. 50, 1888–1907 (1998).MATHCrossRef
37.
Zurück zum Zitat A. Rontó, M. Rontó, and N. Shchobak, “Constructive analysis of periodic solutions with interval halving,” Boundary Value Probl. 2013, 57 (2013).MathSciNetMATHCrossRef A. Rontó, M. Rontó, and N. Shchobak, “Constructive analysis of periodic solutions with interval halving,” Boundary Value Probl. 2013, 57 (2013).MathSciNetMATHCrossRef
38.
Zurück zum Zitat V. M. Budanov, “Undefined frequencies method,” Fundam. Prikl. Mat. 22 (2), 59–71 (2018).MathSciNet V. M. Budanov, “Undefined frequencies method,” Fundam. Prikl. Mat. 22 (2), 59–71 (2018).MathSciNet
39.
Zurück zum Zitat L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” Zh. Eksp. Teor. Fiz. 4 (9), 883–885 (1934). L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” Zh. Eksp. Teor. Fiz. 4 (9), 883–885 (1934).
40.
Zurück zum Zitat L. A. Klimina, “Method for finding periodic trajectories of centrally symmetric dynamical systems on the plane,” Differ. Equat. 55, 159–168 (2019).MathSciNetMATHCrossRef L. A. Klimina, “Method for finding periodic trajectories of centrally symmetric dynamical systems on the plane,” Differ. Equat. 55, 159–168 (2019).MathSciNetMATHCrossRef
41.
Zurück zum Zitat L. A. Klimina and Yu. D. Selyutskii, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).MATHCrossRef L. A. Klimina and Yu. D. Selyutskii, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).MATHCrossRef
42.
Zurück zum Zitat L. A. Cherkas and A. A. Grin’, “Limit cycle function of the second kind for autonomous systems on the cylinder,” Differ. Equat. 47, 462–470 (2011).MATHCrossRef L. A. Cherkas and A. A. Grin’, “Limit cycle function of the second kind for autonomous systems on the cylinder,” Differ. Equat. 47, 462–470 (2011).MATHCrossRef
43.
Zurück zum Zitat L. Cherkas, A. Grin, and K. R. Schneider, “On the approximation of the limit cycles function,” Electron. J. Qualit. Theory Differ. Equat., No. 28, 1–11 (2007). L. Cherkas, A. Grin, and K. R. Schneider, “On the approximation of the limit cycles function,” Electron. J. Qualit. Theory Differ. Equat., No. 28, 1–11 (2007).
44.
Zurück zum Zitat M. Z. Dosaev, V. A. Samsonov, and Yu. D. Selyutskii, “On the dynamics of a small-scale wind power generator,” Dokl. Phys. 52, 493 (2007).MATHCrossRef M. Z. Dosaev, V. A. Samsonov, and Yu. D. Selyutskii, “On the dynamics of a small-scale wind power generator,” Dokl. Phys. 52, 493 (2007).MATHCrossRef
45.
Zurück zum Zitat M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lin, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214 (2009).CrossRef M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lin, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214 (2009).CrossRef
46.
Zurück zum Zitat P. R. Andronov, M. Z. Dosaev, G. Y. Dynnikova, Y. D. Selyutskii, and S. D. Strekalov, “Modeling of oscillating wind turbine,” J. Mach. Manuf. Reliab. 38 (4), 383–387 (2009).CrossRef P. R. Andronov, M. Z. Dosaev, G. Y. Dynnikova, Y. D. Selyutskii, and S. D. Strekalov, “Modeling of oscillating wind turbine,” J. Mach. Manuf. Reliab. 38 (4), 383–387 (2009).CrossRef
47.
Zurück zum Zitat M. Dosaev, A. Holub, and L. Klimina, “Preferable operation modes of a wind turbine with a differential planetary gearbox,” New Trends Mechanism Mach. Sci. 24, 545–552 (2015).CrossRef M. Dosaev, A. Holub, and L. Klimina, “Preferable operation modes of a wind turbine with a differential planetary gearbox,” New Trends Mechanism Mach. Sci. 24, 545–552 (2015).CrossRef
48.
Zurück zum Zitat E. Shalimova, L. Klimina, and K. H. Lin, “On behavior of a double rotor HAWT with a differential planet gear,” Tech. Mech. 37, 394–399 (2017). E. Shalimova, L. Klimina, and K. H. Lin, “On behavior of a double rotor HAWT with a differential planet gear,” Tech. Mech. 37, 394–399 (2017).
49.
Zurück zum Zitat Y. D. Selyutskiy, “On the dynamics of small wind power generators,” Math. Models Comput. Simul. 10, 494–500 (2018).MathSciNetCrossRef Y. D. Selyutskiy, “On the dynamics of small wind power generators,” Math. Models Comput. Simul. 10, 494–500 (2018).MathSciNetCrossRef
50.
Zurück zum Zitat V. A. Samsonov and Yu. D. Selyutskii, “Comparison of different notation for equations of motion of a body in a medium flow,” Mech. Solids 43, 146 (2008). V. A. Samsonov and Yu. D. Selyutskii, “Comparison of different notation for equations of motion of a body in a medium flow,” Mech. Solids 43, 146 (2008).
Metadaten
Titel
Method for Constructing Periodic Solutions of a Controlled Dynamic System with a Cylindrical Phase Space
verfasst von
L. A. Klimina
Publikationsdatum
01.03.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 2/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720020082

Weitere Artikel der Ausgabe 2/2020

Journal of Computer and Systems Sciences International 2/2020 Zur Ausgabe

Premium Partner