Skip to main content
Erschienen in: Glass and Ceramics 9-10/2023

28.02.2023

Method of Eliminating Flatness Defects of Heat Bonded Glass Plates

verfasst von: K. I. Milanina, A. N. Agafonov, T. A. Andreeva

Erschienen in: Glass and Ceramics | Ausgabe 9-10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

A method of eliminating gaps between heat bonded glass plates has been developed using a system for distributing mechanical load. The proposed method was investigated theoretically and experimentally. The results of numerical and full-scale model experiments confirming the efficacy of the proposed method are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
  1. A. N. Agafonov, V. I. Platonov, A. M. Batalova, et al., “Development of the manufacturing technology of microfluidic systems on glass plates,” in: AIP Conference Proceedings. International Conference on Advanced Materials, ICAM 2019, New Delhi, 6 – 7 March 2019, American Institute of Physics Inc., New Delhi (2020), Vol. 2276, pp. 1 – 10.
  2. I. A. Platonov, V. I. Platonov, I. N. Kolesnichenko, et al. “Microfluidic systems in gas analysis: a review,” Sorbts. Khromatogr. Protsessy, 15(6), 754 – 768 (2015).
  3. K. I. Potienko and A. N. Agafonov, “Development of technology for manufacturing a microfluidic system based on silicon and glass substrates,” in: International Youth Scientific Conference, “15th Royal Readings,” Dedicated to the 100th Anniversary of the Birth of D. I. Kozlov: Collection of Works, Samara, October 8 – 10, 2019 [in Russian], Samara (2019), Vol. 1, pp. 415 – 416.
  4. K. I. Milanina, A. N. Agafonov, and A. A. Lyapina, “A method of sealing microfluidic systems on glass substrates,” in: All-Russia Scientific and Technical Conference “Actual Problems of Radio Electronics and Telecommunications,” Samara, April 21 – 23, 2021 [in Russian], Samara (2021), pp. 114 – 116.
  5. B. Renberg, K. Sato, T. Tsukahara, et al., “Hands on: thermal bonding of nano- and microfluidic chips,” Microchim. Acta, 166, 177 – 181 (2009); URL: https://​doi.​org/​10.​1007/​s00604-009-0166-y
  6. K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev., 51(5), 273 – 311 (2006); https://​doi.​org/​10.​1179/​174328006X102501​View Article
  7. Zhi-Jian Jia, Qun Fang, and Zhao-Lun Fang, “Bonding of Glass Microfluidic Chips at Room Temperatures,” Anal. Chem., 76(18), 5597 – 5602 (2004); URL: https://​doi.​org/​10.​1021/​ac0494477
  8. Yu-Jen Pan and Ruey-Jen Yang, “A glass microfluidic chip adhesive bonding method at room temperature,” J. Micromechan. Microeng., 16(12), 2666 – 2672 (2006).View Article
  9. R. O. Claus, “Surface and near-surface defects in glass-to-glass bonds: Author affiliations,” Proc. SPIE, Optomechanical Systems Design, 0250 (1980); URL: https://​doi.​org/​10.​1117/​12.​959434
  10. GOST 2789–73. International State Standard. Surface Roughness. Parameters and Characteristics (with Changes 1, 2) [in Russian], Standartinform, Moscow (2018).
  11. J. Kentsch and S. Breisch, “Low temperature adhesion bonding for BioMEMS,” J. Micromechan. Microeng., 16(4), 802 – 807 (2006); https://​doi.​org/​10.​1088/​0960-1317/​16/​4/​017View Article
  12. GOST 24642–81. International Standard. Basic Norms of Interchangeability. Tolerances of the Shape and Location of Surfaces [in Russian], Izd. standartov, Moscow (2002).
  13. GOST 9284–75. International State Standard. Glasses for Micropreparations. Specifications [in Russian], Izd. standartov, Moscow (1999).
  14. Z. Chen, L. Zhang, and G. Chen, “A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips,” Electrophoresis, 31, 2512 – 2519 (2010); URL: https://​doi.​org/​10.​1002/​elps.​201000084
  15. A. N. Agafonov, K. I. Milanina, T. A. Andreev, and V. I. Platonov, Pat. on Invention. 2766979 C1. A Method of Thermal Connection of Glass Plates with Microstructures on One of Their Surfaces [in Russian], application 2020139856 dated 12/02/2020; publ. March 16, 2022.
  16. A. A. I’yushin, Proceedings, Vol. 3. Theory of Thermoviscoelasticity [in Russian], Fizmatlit, Moscow (2007).
  17. I. I. Kitaigorodskii, Handbook of Glass Manufacture [in Russian], Gosstroiizdat, Moscow (1963), 1026 p.
Metadaten
Titel
Method of Eliminating Flatness Defects of Heat Bonded Glass Plates
verfasst von
K. I. Milanina
A. N. Agafonov
T. A. Andreeva
Publikationsdatum
28.02.2023
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 9-10/2023
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-023-00513-9

Weitere Artikel der Ausgabe 9-10/2023

Glass and Ceramics 9-10/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.