Skip to main content

2023 | OriginalPaper | Buchkapitel

6. Methodology and Validation of a New Climate Prediction Model for Commercial and Small-Scale Greenhouses

verfasst von : Alex Nauta, William David Lubitz, Syeda Humaira Tasnim, Jingjing Han

Erschienen in: Responsible Engineering and Living

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modelling of the greenhouse microclimate represents a great opportunity for existing growers to find ways to optimize energy usage while maintaining temperature and humidity setpoints. Models can also be used by greenhouse designers, as different build options can be compared to ensure optimal design decisions. The cost of installing new technologies and equipment is often high: simulations can be used to provide a good estimate of the potential impact specific systems will have before investing in costly greenhouse infrastructure. This paper documents the development and validation of a thermal energy model designed to simulate the microclimate of a greenhouse based on site properties, exterior conditions, greenhouse operating protocols and heat and mass transfer relationships. A dynamic lumped capacitance model approach was used. Due to the large variety of greenhouse types and equipment, the main objective was to test the predictive performance of the model at various greenhouse sites, ranging from a small backyard greenhouse to large, more complex commercial operations. Measured timeseries data was obtained for each site, either from field studies conducted by the research team or from logged greenhouse controller data supplied by commercial greenhouse operators. Various greenhouse elements common in commercial operations, such as supplemental heating and lighting, forced and passive ventilation, evaporative cooling pads, and dehumidification equipment, are found in some of the test sites, and all are incorporated into the model. The studied greenhouses are all located in southern Ontario, Canada (42.0 °N, 82.8 °W to 43.2 °N, 79.4 °W). This region is characterized as a humid, continental climate with four recognizable seasons (summer, fall, winter and spring). The model was tested with data from each season, since the regional industry is moving towards year-round production. The accuracy of the model results are quantified by using the root mean squared error (RMSE) and mean absolute error (MAE) between measured and simulated values for each test case. The accuracy of greenhouse air temperature and humidity predictions compared favorably with examples in the literature for lumped parameter greenhouse models for all greenhouse sites and seasons simulated. The results support the conclusion that the model is sufficiently accurate to be used as a design tool for growers and greenhouse designers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat G. Zhang, X. Ding, T. Li, W. Pu, W. Lou, J. Hou, Dynamic energy balance model of a glass greenhouse: an experimental validation and solar energy analysis. Energy 198, 117–281 (2020)CrossRef G. Zhang, X. Ding, T. Li, W. Pu, W. Lou, J. Hou, Dynamic energy balance model of a glass greenhouse: an experimental validation and solar energy analysis. Energy 198, 117–281 (2020)CrossRef
3.
Zurück zum Zitat E. Mashonjowa, F. Ronsse, J. Milford, J. Pieters, Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Sol. Energy 91, 381–393 (2013)CrossRef E. Mashonjowa, F. Ronsse, J. Milford, J. Pieters, Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Sol. Energy 91, 381–393 (2013)CrossRef
4.
Zurück zum Zitat B. Vanthoor, C. Stanghellini, E. van Henten, P. de Visser, A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosys. Eng. 110(4), 363–377 (2011)CrossRef B. Vanthoor, C. Stanghellini, E. van Henten, P. de Visser, A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosys. Eng. 110(4), 363–377 (2011)CrossRef
5.
Zurück zum Zitat S. Ahamed, H. Guo, L. Taylor, K. Tanino, Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information Processing in Agriculture 6(1), 81–90 (2019)CrossRef S. Ahamed, H. Guo, L. Taylor, K. Tanino, Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information Processing in Agriculture 6(1), 81–90 (2019)CrossRef
6.
Zurück zum Zitat S. Ahamed, H. Guo, K. Tanino, Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput. Electron. Agric. 150, 235–244 (2018)CrossRef S. Ahamed, H. Guo, K. Tanino, Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput. Electron. Agric. 150, 235–244 (2018)CrossRef
7.
Zurück zum Zitat A. Najjar, A. Hasan, Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49(11), 3338–3342 (2008)CrossRef A. Najjar, A. Hasan, Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49(11), 3338–3342 (2008)CrossRef
8.
Zurück zum Zitat O. Ozgener, L. Ozgener, D. Goswami, Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass Transfer 38, 711–716 (2011)CrossRef O. Ozgener, L. Ozgener, D. Goswami, Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass Transfer 38, 711–716 (2011)CrossRef
9.
Zurück zum Zitat M. Khabbaz, B. Benhamou, K. Limam, P. Hollmuller, H. Hamdi, A. Bennouna, Experimental and numerical study of an earth-to-air heat exchanger for air cooling in a residential building in hot semi-arid climate. Energy Build. 125, 109–121 (2016)CrossRef M. Khabbaz, B. Benhamou, K. Limam, P. Hollmuller, H. Hamdi, A. Bennouna, Experimental and numerical study of an earth-to-air heat exchanger for air cooling in a residential building in hot semi-arid climate. Energy Build. 125, 109–121 (2016)CrossRef
10.
Zurück zum Zitat K. Garzoli, J. Blackwell, An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Eng. Res. 26(3), 203–214 (1981)CrossRef K. Garzoli, J. Blackwell, An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Eng. Res. 26(3), 203–214 (1981)CrossRef
11.
Zurück zum Zitat G. Papadakis, A. Frangoudakis, S. Kyritsis, Mixed, forced and free convection heat transfer at the greenhouse cover. J. Agric. Eng. Res. 51(3), 191–205 (1992)CrossRef G. Papadakis, A. Frangoudakis, S. Kyritsis, Mixed, forced and free convection heat transfer at the greenhouse cover. J. Agric. Eng. Res. 51(3), 191–205 (1992)CrossRef
12.
Zurück zum Zitat J. Roy, T. Boulard, C. Kittas, S. Wang, Convective and ventilation transfers in greenhouses, Part 1: the greenhouse considered as a perfectly stirred tank. Biosys. Eng. 83(1), 1–20 (2002)CrossRef J. Roy, T. Boulard, C. Kittas, S. Wang, Convective and ventilation transfers in greenhouses, Part 1: the greenhouse considered as a perfectly stirred tank. Biosys. Eng. 83(1), 1–20 (2002)CrossRef
13.
Zurück zum Zitat B. Chen, D. Clark, J. Maloney, W.N. Mei, J. Kashner, Measurement of Night Sky Emissivity in Determining Radiant Cooling from Cool Storage Roofs and Roof Ponds. University of Nebraska, Omaha. B. Chen, D. Clark, J. Maloney, W.N. Mei, J. Kashner, Measurement of Night Sky Emissivity in Determining Radiant Cooling from Cool Storage Roofs and Roof Ponds. University of Nebraska, Omaha.
14.
Zurück zum Zitat ANSI/ASAE, Heating, Ventilating and Cooling Greenhouses. American National Standards Institute. EP406.4, 2003. ANSI/ASAE, Heating, Ventilating and Cooling Greenhouses. American National Standards Institute. EP406.4, 2003.
15.
Zurück zum Zitat E. Mashonjowa, F. Ronsse, J. Milford, R. Lemeur, J. Pieters, Measurement and simulation of the ventilation rates in a naturally ventilated azrom-type greenhouse in Zimbabwe. Am. Soc. Agric. Biol. Eng. 26(3), 475–488 (2010) E. Mashonjowa, F. Ronsse, J. Milford, R. Lemeur, J. Pieters, Measurement and simulation of the ventilation rates in a naturally ventilated azrom-type greenhouse in Zimbabwe. Am. Soc. Agric. Biol. Eng. 26(3), 475–488 (2010)
16.
Zurück zum Zitat J. Pieters, J. Deltour, Performances of greenhouses with the presence of condensation on cladding. J. Agric. Eng. Res. 68(2), 125–137 (1997)CrossRef J. Pieters, J. Deltour, Performances of greenhouses with the presence of condensation on cladding. J. Agric. Eng. Res. 68(2), 125–137 (1997)CrossRef
18.
Zurück zum Zitat J. Huang, A simple accurate formula for calculating saturation vapor pressure of water and ice. Am. Meteorol. Soc. 57(6), 1265–1272 (2018) J. Huang, A simple accurate formula for calculating saturation vapor pressure of water and ice. Am. Meteorol. Soc. 57(6), 1265–1272 (2018)
19.
Zurück zum Zitat P. van Beveren, J. Bontsema, G. van Straten, E. van Henten, Optimal control of greenhouse climate using minimal energy and grower defined bounds. Appl. Energy 159, 509–515 (2015)CrossRef P. van Beveren, J. Bontsema, G. van Straten, E. van Henten, Optimal control of greenhouse climate using minimal energy and grower defined bounds. Appl. Energy 159, 509–515 (2015)CrossRef
20.
Zurück zum Zitat R. Salazar-Moreno, I. Lopez-Cruz, A.C. Sanchez-Cruz, Dynamic energy balance model in a greenhouse with tomato cultivation: simulation, calibration and evaluation. Revista Chapingo Serie Hortic. 25(1) (2019). R. Salazar-Moreno, I. Lopez-Cruz, A.C. Sanchez-Cruz, Dynamic energy balance model in a greenhouse with tomato cultivation: simulation, calibration and evaluation. Revista Chapingo Serie Hortic. 25(1) (2019).
21.
Zurück zum Zitat E. Belmont, Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses. Environ. Res. Lett. 12 (2017). E. Belmont, Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses. Environ. Res. Lett. 12 (2017).
22.
Zurück zum Zitat J. Han, H. Guo, R. Brad, D. Waterer, Mechanical refrigeration dehumidifier performance evaluation in a tomato greenhouse in cold regions. ASABE 59(4), 933–941 (2016)CrossRef J. Han, H. Guo, R. Brad, D. Waterer, Mechanical refrigeration dehumidifier performance evaluation in a tomato greenhouse in cold regions. ASABE 59(4), 933–941 (2016)CrossRef
23.
Zurück zum Zitat C. Kittas, T. Bartzanas, A. Jaffrin, Greenhouse evaporative cooling: measurement and data analysis, in Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Tech. towards 3rd Mill (2000). C. Kittas, T. Bartzanas, A. Jaffrin, Greenhouse evaporative cooling: measurement and data analysis, in Proceedings of the International Conference and British-Israeli Workshop on Greenhouse Tech. towards 3rd Mill (2000).
24.
Zurück zum Zitat R. Stull, Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50(11), 2267–2269 (2011)CrossRef R. Stull, Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50(11), 2267–2269 (2011)CrossRef
25.
Zurück zum Zitat J. Xu, Y. Li, R. Wang, W. Liu, P. Zhou, Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 138, 291–301 (2015)CrossRef J. Xu, Y. Li, R. Wang, W. Liu, P. Zhou, Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 138, 291–301 (2015)CrossRef
26.
Zurück zum Zitat K. Kowalczyk, D. Olewnicki, M. Mirgos, J. Gajc-Wolska, Comparison of selected costs in greenhouse cucumber production with LED and HPS supplemental assimilation lighting. Agronomy 10(1342) (2020). K. Kowalczyk, D. Olewnicki, M. Mirgos, J. Gajc-Wolska, Comparison of selected costs in greenhouse cucumber production with LED and HPS supplemental assimilation lighting. Agronomy 10(1342) (2020).
27.
Zurück zum Zitat S. Al Mamun Hossain, L. Wang, T. Chen, Z. Li, Leaf area index assessment for tomato and cucumber growing period under different water treatments. Plant. Soil Environ. 63(10), 461–467 (2017). S. Al Mamun Hossain, L. Wang, T. Chen, Z. Li, Leaf area index assessment for tomato and cucumber growing period under different water treatments. Plant. Soil Environ. 63(10), 461–467 (2017).
28.
Zurück zum Zitat T. Boulard, S. Wang, Greenhouse crop transpiration model from external climate conditions. Agric. For. Meteorol. 100, 25–34 (2000)CrossRef T. Boulard, S. Wang, Greenhouse crop transpiration model from external climate conditions. Agric. For. Meteorol. 100, 25–34 (2000)CrossRef
29.
Zurück zum Zitat L. Mascarini, G. Lorenzo, F. Vilella, Leaf area index, water index, and red: far red ratio calculated by spectral reflectance and its relation to plant architecture and cut rose production. J. Am. Soc. Hortic. Sci. 131(3), 313–319 (2006)CrossRef L. Mascarini, G. Lorenzo, F. Vilella, Leaf area index, water index, and red: far red ratio calculated by spectral reflectance and its relation to plant architecture and cut rose production. J. Am. Soc. Hortic. Sci. 131(3), 313–319 (2006)CrossRef
31.
Zurück zum Zitat S. Dong, M. S. Ahamed, C. Ma, H. Guo, A time-dependent model for predicting thermal environment of mono-slope solar greenhouses in cold regions. Energies 14 (2021). S. Dong, M. S. Ahamed, C. Ma, H. Guo, A time-dependent model for predicting thermal environment of mono-slope solar greenhouses in cold regions. Energies 14 (2021).
32.
Zurück zum Zitat Y. Zhang, Y. Mahrer, M. Margolin, Predicting the microclimate inside a greenhouse: an application of a one-dimensional numerical model in an unheated greenhouse. Agric. For. Meteorol. 86(3), 291–297 (1997)CrossRef Y. Zhang, Y. Mahrer, M. Margolin, Predicting the microclimate inside a greenhouse: an application of a one-dimensional numerical model in an unheated greenhouse. Agric. For. Meteorol. 86(3), 291–297 (1997)CrossRef
33.
Zurück zum Zitat V. Sethi, Thermal modelling of asymmetric overlap roof greenhouse with experimental validation. Int. J. Sustain. Energ. 38(1), 24–36 (2018)CrossRef V. Sethi, Thermal modelling of asymmetric overlap roof greenhouse with experimental validation. Int. J. Sustain. Energ. 38(1), 24–36 (2018)CrossRef
34.
Zurück zum Zitat S. Ghose, W. Lubitz, Thermal Modelling of Passive Solar High Tunnels Located at the Guelph Centre for Urban Organic Farming (University of Guelph, Guelph, 2018) S. Ghose, W. Lubitz, Thermal Modelling of Passive Solar High Tunnels Located at the Guelph Centre for Urban Organic Farming (University of Guelph, Guelph, 2018)
Metadaten
Titel
Methodology and Validation of a New Climate Prediction Model for Commercial and Small-Scale Greenhouses
verfasst von
Alex Nauta
William David Lubitz
Syeda Humaira Tasnim
Jingjing Han
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20506-4_6