Skip to main content

2023 | OriginalPaper | Buchkapitel

5. Solar Rooftop Test Cell—Experimental Methodology and Results of Multivariable Sensitivity Analysis

verfasst von : Alex Nauta, William David Lubitz, Syeda Humaira Tasnim

Erschienen in: Responsible Engineering and Living

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Existing greenhouse models in literature often use input parameters that are selected with little to no scientific explanation. To address this, a solar test cell was constructed and placed on the roof of the Albert A Thornborough building at the University of Guelph from June to August 2021. The test cell was built to allow controlled investigation of thermal properties of a simplified version of a greenhouse, with fewer unknown values and relationships. The experimental set-up included 6 mil polyethylene glazing above a 10 cm deep air layer, above 5 cm of sand. The structure was framed with dimensional lumber and particle board and included 2.5 cm of foam board insulation on side walls and below the sand layer to mitigate heat loss. Interior and exterior temperature and relative humidities, as well as wind speed and solar irradiance were recorded over the duration of the experiment. Heat transfer in the cell was simulated with a modified one-dimensional lumped capacitance model that tracked heat fluxes between discrete layers. Identifying the optimal parameters for this test cell allow for relevant findings to be transferred to more complex greenhouse models. Two multivariable sensitivity analyses were conducted on parameters and relationships used in the model, with the optimized configuration resulting in root mean squared errors for air temperature that were less than 5 °C, with a daily air temperature range of over 70 °C. Also included is a methodology for finding the thermal conductivity and specific heat capacity of the soil using measured temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D. Katzin, L. Marcelis, S. van Mourik, Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Appl. Energy 281, 116019 (2021)CrossRef D. Katzin, L. Marcelis, S. van Mourik, Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Appl. Energy 281, 116019 (2021)CrossRef
2.
Zurück zum Zitat S. Ahamed, H. Guo, K. Tanino, Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput. Electron. Agric. 150, 235–244 (2018)CrossRef S. Ahamed, H. Guo, K. Tanino, Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput. Electron. Agric. 150, 235–244 (2018)CrossRef
3.
Zurück zum Zitat B. Vanthoor, C. Stanghellini, E. van Henten, P. de Visser, A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosys. Eng. 110(4), 363–377 (2011)CrossRef B. Vanthoor, C. Stanghellini, E. van Henten, P. de Visser, A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosys. Eng. 110(4), 363–377 (2011)CrossRef
4.
Zurück zum Zitat Y. Zhang, Y. Mahrer, M. Margolin, Predicting the microclimate inside a greenhouse: an application of a one-dimensional numerical model in an unheated greenhouse. Agric. For. Meteorol. 86(3), 291–297 (1997)CrossRef Y. Zhang, Y. Mahrer, M. Margolin, Predicting the microclimate inside a greenhouse: an application of a one-dimensional numerical model in an unheated greenhouse. Agric. For. Meteorol. 86(3), 291–297 (1997)CrossRef
5.
Zurück zum Zitat E. Mashonjowa, F. Ronsse, J. Milford, J. Pieters, Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Sol. Energy 91, 381–393 (2013)CrossRef E. Mashonjowa, F. Ronsse, J. Milford, J. Pieters, Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model. Sol. Energy 91, 381–393 (2013)CrossRef
6.
Zurück zum Zitat J. Pieters, J. Deltour, Performances of greenhouses with the presence of condensation on cladding. J. Agric. Eng. Res. 68(2), 125–137 (1997)CrossRef J. Pieters, J. Deltour, Performances of greenhouses with the presence of condensation on cladding. J. Agric. Eng. Res. 68(2), 125–137 (1997)CrossRef
7.
Zurück zum Zitat ANSI/ASAE, Heating, Ventilating and Cooling Greenhouses, American National Standards Institute. EP406.4 (2003). ANSI/ASAE, Heating, Ventilating and Cooling Greenhouses, American National Standards Institute. EP406.4 (2003).
8.
Zurück zum Zitat E. Mashonjowa, F. Ronsse, J. Milford, R. Lemeur, J. Pieters, Measurement and simulation of the ventilation rates in a naturally ventilated azrom-type greenhouse in Zimbabwe. Am. Soc. Agric. Biol. Eng. 26(3), 475–488 (2010) E. Mashonjowa, F. Ronsse, J. Milford, R. Lemeur, J. Pieters, Measurement and simulation of the ventilation rates in a naturally ventilated azrom-type greenhouse in Zimbabwe. Am. Soc. Agric. Biol. Eng. 26(3), 475–488 (2010)
9.
Zurück zum Zitat I. Hamdhan, B. Clarke, Determination of thermal conductivity of coarse and fine sand soils, in Proceedings World Geothermal Congress, Bali (2010). I. Hamdhan, B. Clarke, Determination of thermal conductivity of coarse and fine sand soils, in Proceedings World Geothermal Congress, Bali (2010).
10.
Zurück zum Zitat W. Lubitz, Reducing Canadian Greenhouse energy costs using highly insulating glazing, in Renewable Energy in the Service of Mankind Vol. I (Springer International Publishing, Cham, 2015), pp. 649–658. W. Lubitz, Reducing Canadian Greenhouse energy costs using highly insulating glazing, in Renewable Energy in the Service of Mankind Vol. I (Springer International Publishing, Cham, 2015), pp. 649–658.
11.
Zurück zum Zitat S. Ghose, W. Lubitz, Thermal Modelling of Passive Solar High Tunnels Located at the Guelph Centre for Urban Organic Farming (University of Guelph, Guelph, 2018) S. Ghose, W. Lubitz, Thermal Modelling of Passive Solar High Tunnels Located at the Guelph Centre for Urban Organic Farming (University of Guelph, Guelph, 2018)
12.
Zurück zum Zitat B. Chen, D. Clark, J. Maloney, W.N. Mei, J. Kashner, Measurement of Night Sky Emissivity in Determining Radiant Cooling from Cool Storage Roofs and Roof Ponds, University of Nebraska, Omaha. B. Chen, D. Clark, J. Maloney, W.N. Mei, J. Kashner, Measurement of Night Sky Emissivity in Determining Radiant Cooling from Cool Storage Roofs and Roof Ponds, University of Nebraska, Omaha.
13.
Zurück zum Zitat V. Oyj, Humidity Conversion Formulas (Vaisala Oyj, Helsinki, 2013). V. Oyj, Humidity Conversion Formulas (Vaisala Oyj, Helsinki, 2013).
14.
Zurück zum Zitat J. Huang, A simple accurate formula for calculating saturation vapor pressure of water and ice. Am. Meteorol. Soc. 57(6), 1265–1272 (2018) J. Huang, A simple accurate formula for calculating saturation vapor pressure of water and ice. Am. Meteorol. Soc. 57(6), 1265–1272 (2018)
15.
Zurück zum Zitat B. Dogan, H. Tan, The numerical and experimental investigation of the change of the thermal conductivity of expanded polystyrene at different temperatures and densities. Int. J. Poly. Sci. (2019). B. Dogan, H. Tan, The numerical and experimental investigation of the change of the thermal conductivity of expanded polystyrene at different temperatures and densities. Int. J. Poly. Sci. (2019).
16.
Zurück zum Zitat K. Garzoli, J. Blackwell, An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Eng. Res. 26(3), 203–214 (1981)CrossRef K. Garzoli, J. Blackwell, An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Eng. Res. 26(3), 203–214 (1981)CrossRef
17.
Zurück zum Zitat G. Papadakis, A. Frangoudakis, S. Kyritsis, Mixed, forced and free convection heat transfer at the greenhouse cover. J. Agric. Eng. Res. 51(3), 191–205 (1992)CrossRef G. Papadakis, A. Frangoudakis, S. Kyritsis, Mixed, forced and free convection heat transfer at the greenhouse cover. J. Agric. Eng. Res. 51(3), 191–205 (1992)CrossRef
18.
Zurück zum Zitat J. Roy, T. Boulard, C. Kittas, S. Wang, Convective and ventilation transfers in greenhouses, Part 1: The Greenhouse considered as a perfectly stirred tank. Biosys. Eng. 83(1), 1–20 (2002)CrossRef J. Roy, T. Boulard, C. Kittas, S. Wang, Convective and ventilation transfers in greenhouses, Part 1: The Greenhouse considered as a perfectly stirred tank. Biosys. Eng. 83(1), 1–20 (2002)CrossRef
19.
Zurück zum Zitat C. Kittas, Greenhouse cover conductances. Agric. Res. Center Pelopon. Ipiros 36(3), 213–225 (1986) C. Kittas, Greenhouse cover conductances. Agric. Res. Center Pelopon. Ipiros 36(3), 213–225 (1986)
20.
Zurück zum Zitat P. Berdahl, M. Martin, Emissivity of clear skies. Sol. Energy 32(5), 663–664 (1984)CrossRef P. Berdahl, M. Martin, Emissivity of clear skies. Sol. Energy 32(5), 663–664 (1984)CrossRef
21.
Zurück zum Zitat R. Avissar, Y. Mahrer, Verification study of a numerical greenhouse. Am. Soc. Agric. Biol. Eng. 25(6), 1711–1720 (1982)CrossRef R. Avissar, Y. Mahrer, Verification study of a numerical greenhouse. Am. Soc. Agric. Biol. Eng. 25(6), 1711–1720 (1982)CrossRef
22.
Zurück zum Zitat M. Ahamed, H. Guo, K. Tanino, Energy-efficient design of greenhouse for Canadian Prairies using a heating simulation model. Int. J. Energy Res. 42(6), 2263–2272 (2018)CrossRef M. Ahamed, H. Guo, K. Tanino, Energy-efficient design of greenhouse for Canadian Prairies using a heating simulation model. Int. J. Energy Res. 42(6), 2263–2272 (2018)CrossRef
23.
Zurück zum Zitat A. Najjar, A. Hasan, Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49(11), 3338–3342 (2008)CrossRef A. Najjar, A. Hasan, Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49(11), 3338–3342 (2008)CrossRef
24.
Zurück zum Zitat B. Xu, P. Li, C. Chan, Extending the validity of lumped capacitance method for large Biot number in thermal storage application. Sol. Energy 86, 1709–1724 (2012)CrossRef B. Xu, P. Li, C. Chan, Extending the validity of lumped capacitance method for large Biot number in thermal storage application. Sol. Energy 86, 1709–1724 (2012)CrossRef
Metadaten
Titel
Solar Rooftop Test Cell—Experimental Methodology and Results of Multivariable Sensitivity Analysis
verfasst von
Alex Nauta
William David Lubitz
Syeda Humaira Tasnim
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20506-4_5