Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Methodology

verfasst von : Tuan Anh Ho

Erschienen in: Nanoscale Fluid Transport

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular modeling techniques have been extensively used in studying fluid flow in nanochannels. In this Chapter I discuss the basic background of equilibrium and non-equilibrium molecular dynamics simulations. 

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Van der Spoel, D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.CrossRef Van der Spoel, D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.CrossRef
2.
Zurück zum Zitat Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., & Hermans, J. (1981). Intermolecular forces. Dordrecht: Reidel. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., & Hermans, J. (1981). Intermolecular forces. Dordrecht: Reidel.
3.
Zurück zum Zitat Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef
4.
Zurück zum Zitat Abascal, J. L. F., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 123(23), 234505.CrossRef Abascal, J. L. F., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 123(23), 234505.CrossRef
5.
Zurück zum Zitat Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.CrossRef Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.CrossRef
6.
Zurück zum Zitat Mahoney, M. W., & Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics, 112(20), 8910–8922.CrossRef Mahoney, M. W., & Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics, 112(20), 8910–8922.CrossRef
7.
Zurück zum Zitat Gonzalez, M. A., & Abascal, J. L. F. (2011). A flexible model for water based on TIP4P/2005. The Journal of Chemical Physics, 135(22), 224516–224523.CrossRef Gonzalez, M. A., & Abascal, J. L. F. (2011). A flexible model for water based on TIP4P/2005. The Journal of Chemical Physics, 135(22), 224516–224523.CrossRef
8.
Zurück zum Zitat Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249.CrossRef Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249.CrossRef
9.
Zurück zum Zitat Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.CrossRef Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.CrossRef
10.
Zurück zum Zitat Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960.CrossRef Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960.CrossRef
11.
Zurück zum Zitat Pusztai, L., Pizio, O., & Sokolowski, S. (2008). Comparison of interaction potentials of liquid water with respect to their consistency with neutron diffraction data of pure heavy water. The Journal of Chemical Physics, 129(18), 184103.CrossRef Pusztai, L., Pizio, O., & Sokolowski, S. (2008). Comparison of interaction potentials of liquid water with respect to their consistency with neutron diffraction data of pure heavy water. The Journal of Chemical Physics, 129(18), 184103.CrossRef
12.
Zurück zum Zitat Krynicki, K., Green, C. D., & Sawyer, D. W. (1978). Pressure and temperature-dependence of self-diffusion in water. Faraday Discussions, 66, 199–208.CrossRef Krynicki, K., Green, C. D., & Sawyer, D. W. (1978). Pressure and temperature-dependence of self-diffusion in water. Faraday Discussions, 66, 199–208.CrossRef
13.
Zurück zum Zitat Mahoney, M. W., & Jorgensen, W. L. (2001). Diffusion constant of the TIP5P model of liquid water. The Journal of Chemical Physics, 114(1), 363–366.CrossRef Mahoney, M. W., & Jorgensen, W. L. (2001). Diffusion constant of the TIP5P model of liquid water. The Journal of Chemical Physics, 114(1), 363–366.CrossRef
14.
Zurück zum Zitat Vega, C., & Abascal, J. L. F. (2011). Simulating water with rigid non-polarizable models: A general perspective. Physical Chemistry Chemical Physics: PCCP, 13(44), 19663–19688.CrossRef Vega, C., & Abascal, J. L. F. (2011). Simulating water with rigid non-polarizable models: A general perspective. Physical Chemistry Chemical Physics: PCCP, 13(44), 19663–19688.CrossRef
15.
Zurück zum Zitat Ho, T. A., et al. (2011). Interfacial water on crystalline silica: A comparative molecular dynamics simulation study. Molecular Simulation, 37(3), 172–195.CrossRef Ho, T. A., et al. (2011). Interfacial water on crystalline silica: A comparative molecular dynamics simulation study. Molecular Simulation, 37(3), 172–195.CrossRef
16.
Zurück zum Zitat Basconi, J. E., & Shirts, M. R. (2013). Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. Journal of Chemical Theory and Computation, 9(7), 2887–2899.CrossRef Basconi, J. E., & Shirts, M. R. (2013). Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. Journal of Chemical Theory and Computation, 9(7), 2887–2899.CrossRef
17.
Zurück zum Zitat Thompson, P. A., & Troian, S. M. (1997). A general boundary condition for liquid flow at solid surfaces. Nature, 389(6649), 360.CrossRef Thompson, P. A., & Troian, S. M. (1997). A general boundary condition for liquid flow at solid surfaces. Nature, 389(6649), 360.CrossRef
18.
Zurück zum Zitat Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer. Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer.
19.
Zurück zum Zitat Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170–16175.CrossRef Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170–16175.CrossRef
20.
Zurück zum Zitat Cohen-Tanugi, D., & Grossman, J. C. (2012). Water Desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef Cohen-Tanugi, D., & Grossman, J. C. (2012). Water Desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef
21.
Zurück zum Zitat Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef
22.
Zurück zum Zitat Whitby, M., & Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94.CrossRef Whitby, M., & Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94.CrossRef
23.
Zurück zum Zitat Toton, D., Lorenz, C. D., Rompotis, N., Martsinovich, N., & Kantorovich, L. (2010). Temperature control in molecular dynamic simulations of non-equilibrium processes. Journal of Physics: Condensed Matter, 22(7), 074205. Toton, D., Lorenz, C. D., Rompotis, N., Martsinovich, N., & Kantorovich, L. (2010). Temperature control in molecular dynamic simulations of non-equilibrium processes. Journal of Physics: Condensed Matter, 22(7), 074205.
24.
Zurück zum Zitat Zhu, W., Singer, S. J., Zheng, Z., & Conlisk, A. T. (2005). Electro-osmotic flow of a model electrolyte. Physical Review E, 71(4), 041501.CrossRef Zhu, W., Singer, S. J., Zheng, Z., & Conlisk, A. T. (2005). Electro-osmotic flow of a model electrolyte. Physical Review E, 71(4), 041501.CrossRef
25.
Zurück zum Zitat Freund, J. B. (2002). Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. The Journal of Chemical Physics, 116(5), 2194–2200.CrossRef Freund, J. B. (2002). Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. The Journal of Chemical Physics, 116(5), 2194–2200.CrossRef
26.
Zurück zum Zitat Qiao, R., & Aluru, N. R. (2003). Ion concentrations and velocity profiles in nanochannel electroosmotic flows. The Journal of Chemical Physics, 118(10), 4692–4701.CrossRef Qiao, R., & Aluru, N. R. (2003). Ion concentrations and velocity profiles in nanochannel electroosmotic flows. The Journal of Chemical Physics, 118(10), 4692–4701.CrossRef
27.
Zurück zum Zitat Khare, R., de Pablo, J., & Yethiraj, A. (1997). Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. The Journal of Chemical Physics, 107(7), 2589–2596.CrossRef Khare, R., de Pablo, J., & Yethiraj, A. (1997). Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. The Journal of Chemical Physics, 107(7), 2589–2596.CrossRef
Metadaten
Titel
Methodology
verfasst von
Tuan Anh Ho
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47003-0_2