Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Micro-Tactile Sensors for In Vivo Measurements of Elasticity

verfasst von : Peng Peng, Rajesh Rajamani

Erschienen in: Advanced Mechatronics and MEMS Devices

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a sensing approach for the measurement of both contact force and elasticity is introduced and discussed. By using the developed method, the elasticity of various objects (e.g., tissue) can be measured by simply touching the targeted object with the sensor. Each developed sensor consists of a pair of contact elements that have different values of stiffness. During contact, the relative deformation of the two sensing components can be used to calculate the Young’s modulus of elasticity. Several prototypes of tactile sensors have been fabricated through various MEMS processes. One of the prototypes developed through a polymer MEMS process has a favorable flexible structure, which enables the sensor to be integrated on end-effectors for robotic or biomedical applications. Finally, the tactile sensor has been attached on a touch probe and tested in a handheld mode. An estimation algorithm for this handheld device, which employs a recursive least squares method with adaptive forgetting factors, has also been developed. Experimental results show that this sensor can differentiate between a variety of rubber specimens and has the potential to provide reliable in vivo measurement of tissue elasticity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tegin J, Wikander J (2005) Tactile sensing in intelligent robotic manipulation—a review. Ind Robot 32:64–70CrossRef Tegin J, Wikander J (2005) Tactile sensing in intelligent robotic manipulation—a review. Ind Robot 32:64–70CrossRef
2.
Zurück zum Zitat Aoyagi R, Yoshida T (2004) Frequency equations of an ultrasonic vibrator for the elastic sensor using a contact impedance method. Jpn J Appl Phys 43:3204–3209CrossRef Aoyagi R, Yoshida T (2004) Frequency equations of an ultrasonic vibrator for the elastic sensor using a contact impedance method. Jpn J Appl Phys 43:3204–3209CrossRef
3.
Zurück zum Zitat Bab A et al (2008) Design and simulation of a tactile sensor for soft-tissue compliance detection. IEEJ Trans Sensor Micromachine 128:186–192CrossRef Bab A et al (2008) Design and simulation of a tactile sensor for soft-tissue compliance detection. IEEJ Trans Sensor Micromachine 128:186–192CrossRef
4.
Zurück zum Zitat Murayama Y et al (2008) Development of a new instrument for examination of stiffness in the breast using haptic sensor technology. Sensor Actuator Phys 143:430–438CrossRef Murayama Y et al (2008) Development of a new instrument for examination of stiffness in the breast using haptic sensor technology. Sensor Actuator Phys 143:430–438CrossRef
5.
Zurück zum Zitat Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13:1163–1177CrossRef Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13:1163–1177CrossRef
6.
Zurück zum Zitat Tholey G et al (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241:102 Tholey G et al (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241:102
7.
Zurück zum Zitat Lyyra T et al (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res B Appl Biomater 48:482–487CrossRef Lyyra T et al (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res B Appl Biomater 48:482–487CrossRef
8.
Zurück zum Zitat Ottensmeyer M, Salisbury J (2001) In vivo data acquisition instrument for solid organ mechanical property measurement. In: Medical image computing and computer-assisted intervention, Springer, Heidelberg, pp 975–982 Ottensmeyer M, Salisbury J (2001) In vivo data acquisition instrument for solid organ mechanical property measurement. In: Medical image computing and computer-assisted intervention, Springer, Heidelberg, pp 975–982
9.
Zurück zum Zitat Szewczyk S et al (2006) Palpationlike soft-material elastic modulus measurement using piezoelectric cantilevers. Rev Sci Instrum 77:044302CrossRef Szewczyk S et al (2006) Palpationlike soft-material elastic modulus measurement using piezoelectric cantilevers. Rev Sci Instrum 77:044302CrossRef
10.
Zurück zum Zitat Wellman P et al (1999) Breast tissue stiffness in compression is correlated to histological diagnosis. Harvard BioRobotics Laboratory Technical Report Wellman P et al (1999) Breast tissue stiffness in compression is correlated to histological diagnosis. Harvard BioRobotics Laboratory Technical Report
11.
Zurück zum Zitat Vannah W et al (1999) A method of residual limb stiffness distribution measurement. J Rehabil Res Dev 36:1–7 Vannah W et al (1999) A method of residual limb stiffness distribution measurement. J Rehabil Res Dev 36:1–7
12.
Zurück zum Zitat Muthupillai R et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854CrossRef Muthupillai R et al (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854CrossRef
13.
Zurück zum Zitat Sarvazyan A et al (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24:1419–1435CrossRef Sarvazyan A et al (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24:1419–1435CrossRef
14.
Zurück zum Zitat Chen S et al (2009) Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectrics Freq Contr 56:55–62CrossRef Chen S et al (2009) Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectrics Freq Contr 56:55–62CrossRef
15.
Zurück zum Zitat Bercoff J et al (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectrics Freq Contr 51:396–409CrossRef Bercoff J et al (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectrics Freq Contr 51:396–409CrossRef
16.
Zurück zum Zitat Kleesattel C, Gladwell G (1968) The contact-impedance meter-1. Ultrasonics 6:175–180CrossRef Kleesattel C, Gladwell G (1968) The contact-impedance meter-1. Ultrasonics 6:175–180CrossRef
17.
Zurück zum Zitat Omata S, Terunuma Y (1992) New tactile sensor like the human hand and its applications. Sensor Actuator Phys 35:9–15CrossRef Omata S, Terunuma Y (1992) New tactile sensor like the human hand and its applications. Sensor Actuator Phys 35:9–15CrossRef
18.
Zurück zum Zitat Jalkanen V (2010) Hand-held resonance sensor for tissue stiffness measurements—a theoretical and experimental analysis. Meas Sci Tech 21:055801CrossRef Jalkanen V (2010) Hand-held resonance sensor for tissue stiffness measurements—a theoretical and experimental analysis. Meas Sci Tech 21:055801CrossRef
19.
Zurück zum Zitat Murayama Y, Omata S (2004) Fabrication of micro tactile sensor for the measurement of micro-scale local elasticity. Sensor Actuator Phys 109:202–207CrossRef Murayama Y, Omata S (2004) Fabrication of micro tactile sensor for the measurement of micro-scale local elasticity. Sensor Actuator Phys 109:202–207CrossRef
20.
Zurück zum Zitat Murayama Y et al (2005) Development of tactile mapping system for the stiffness characterization of tissue slice using novel tactile sensing technology. Sensor Actuator Phys 120:543–549CrossRef Murayama Y et al (2005) Development of tactile mapping system for the stiffness characterization of tissue slice using novel tactile sensing technology. Sensor Actuator Phys 120:543–549CrossRef
21.
Zurück zum Zitat Murayama Y et al (2007) High resolution regional elasticity mapping of the human prostate. Conf Proc IEEE Eng Med Biol Soc 2007:5803–5806 Murayama Y et al (2007) High resolution regional elasticity mapping of the human prostate. Conf Proc IEEE Eng Med Biol Soc 2007:5803–5806
22.
Zurück zum Zitat Oie T et al (2009) Local elasticity imaging of vascular tissues using a tactile mapping system. J Artif Organs 12:40–46CrossRef Oie T et al (2009) Local elasticity imaging of vascular tissues using a tactile mapping system. J Artif Organs 12:40–46CrossRef
23.
Zurück zum Zitat Dargahi J et al (2007) Modelling and testing of a sensor capable of determining the stiffness of biological tissues. Can J Electr Comput Eng 32:45–51CrossRef Dargahi J et al (2007) Modelling and testing of a sensor capable of determining the stiffness of biological tissues. Can J Electr Comput Eng 32:45–51CrossRef
24.
Zurück zum Zitat Beebe D et al (1995) A silicon force sensor for robotics and medicine. Sensor Actuator Phys 50:55–65CrossRef Beebe D et al (1995) A silicon force sensor for robotics and medicine. Sensor Actuator Phys 50:55–65CrossRef
25.
Zurück zum Zitat Kim K, Lee K, Kim Y, Lee D, Cho N, Kim W, Park K, Park H, Park Y, Kim J (2006) In: 19th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, Istanbul, pp. 678–681. Kim K, Lee K, Kim Y, Lee D, Cho N, Kim W, Park K, Park H, Park Y, Kim J (2006) In: 19th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, Istanbul, pp. 678–681.
26.
Zurück zum Zitat Gray BL, Fearing RS (1996) In: IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, MN, USA pp. 1–6. Gray BL, Fearing RS (1996) In: IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, MN, USA pp. 1–6.
27.
Zurück zum Zitat Leineweber M et al (2000) New tactile sensor chip with silicone rubber cover. Sensor Actuator Phys 84:236–245CrossRef Leineweber M et al (2000) New tactile sensor chip with silicone rubber cover. Sensor Actuator Phys 84:236–245CrossRef
28.
Zurück zum Zitat Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) In: IEEE Sensors, IEEE, Kissimmee, Florida, USA pp. 1625–1630. Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) In: IEEE Sensors, IEEE, Kissimmee, Florida, USA pp. 1625–1630.
29.
Zurück zum Zitat Engel J et al (2003) Development of polyimide flexible tactile sensor skin. J Micromech Microeng 13:359CrossRef Engel J et al (2003) Development of polyimide flexible tactile sensor skin. J Micromech Microeng 13:359CrossRef
30.
Zurück zum Zitat Engel J et al (2005) Polymer micromachined multimodal tactile sensors. Sensor Actuator Phys 117:50–61CrossRef Engel J et al (2005) Polymer micromachined multimodal tactile sensors. Sensor Actuator Phys 117:50–61CrossRef
31.
Zurück zum Zitat Lee H et al (2006) A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J Microelectromech Syst 15:1681–1686CrossRef Lee H et al (2006) A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J Microelectromech Syst 15:1681–1686CrossRef
32.
Zurück zum Zitat Johnson K (1987) Contact mechanics. Cambridge University Press, Cambridge Johnson K (1987) Contact mechanics. Cambridge University Press, Cambridge
33.
Zurück zum Zitat Peng P et al (2009) Novel MEMS stiffness sensor for in-vivo tissue characterization measurement. Conf Proc IEEE Eng Med Biol Soc 1:6640–6643 Peng P et al (2009) Novel MEMS stiffness sensor for in-vivo tissue characterization measurement. Conf Proc IEEE Eng Med Biol Soc 1:6640–6643
34.
Zurück zum Zitat Peng P et al (2010) Novel MEMS stiffness sensor for force and elasticity measurements. Sensor Actuator Phys 158:10–17CrossRef Peng P et al (2010) Novel MEMS stiffness sensor for force and elasticity measurements. Sensor Actuator Phys 158:10–17CrossRef
35.
Zurück zum Zitat Sezen A et al (2005) Passive wireless MEMS microphones for biomedical applications. J Biomech Eng 127:1030CrossRef Sezen A et al (2005) Passive wireless MEMS microphones for biomedical applications. J Biomech Eng 127:1030CrossRef
36.
Zurück zum Zitat Peng P et al (2009) Flexible tactile sensor for tissue elasticity measurements. J Microelectromech Syst 18:1226–1233CrossRef Peng P et al (2009) Flexible tactile sensor for tissue elasticity measurements. J Microelectromech Syst 18:1226–1233CrossRef
37.
Zurück zum Zitat Jo B et al (2002) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76–81CrossRef Jo B et al (2002) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76–81CrossRef
38.
Zurück zum Zitat Peng P, Rajamani R (2011) Handheld micro tactile sensor for elasticity measurement. IEEE Sensor, Vol. 11, no. 9, pp 1935–1942, Sept 2011 Peng P, Rajamani R (2011) Handheld micro tactile sensor for elasticity measurement. IEEE Sensor, Vol. 11, no. 9, pp 1935–1942, Sept 2011
39.
Zurück zum Zitat Wang J et al (2004) Friction estimation on highway vehicles using longitudinal measurements. J Dyn Syst Meas Contr 126:265CrossRef Wang J et al (2004) Friction estimation on highway vehicles using longitudinal measurements. J Dyn Syst Meas Contr 126:265CrossRef
40.
Zurück zum Zitat Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness. Prentice-Hall, NJMATH Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness. Prentice-Hall, NJMATH
41.
Zurück zum Zitat Gustafsson F (2001) Adaptive filtering and change detection. Wiley, ChichesterCrossRef Gustafsson F (2001) Adaptive filtering and change detection. Wiley, ChichesterCrossRef
43.
Zurück zum Zitat Rajamani R (2002) Radar health monitoring for highway vehicle applications. Veh Syst Dyn 38:23–54CrossRef Rajamani R (2002) Radar health monitoring for highway vehicle applications. Veh Syst Dyn 38:23–54CrossRef
Metadaten
Titel
Micro-Tactile Sensors for In Vivo Measurements of Elasticity
verfasst von
Peng Peng
Rajesh Rajamani
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9985-6_7

Neuer Inhalt