Skip to main content

2024 | OriginalPaper | Buchkapitel

Microbial Nanobioremediation of Micro-Nanoplastics: Current Strategies, Challenges, and Future Prospects

verfasst von : Jyothirmayee Kola Pratap, Kannabiran Krishnan

Erschienen in: Management of Micro and Nano-plastics in Soil and Biosolids

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastic is the most common man-made polymer. It possesses greater flexibility, durability, lower manufacturing cost, and lighter weight, leading to increased consumption and production of single-use plastics. In developed countries, plastic materials are used in packaging, construction, automobiles, medical devices, furniture, toys, etc. Improper disposal of plastic waste and poor degradation lead to massive accumulation in the environment. It degrades naturally with the help of sunlight, heat, oxygen level, and salinity into micro-nanoplastics (MNPs). The produced MNPs are major sources of plastic pollution affecting our entire ecosystem directly or indirectly, by emitting plastic waste contaminants for decades. The conventional method of micro-nanoplastic degradation produces highly toxic compounds, posing environmental and health risks. Bioremediation is considered to be a better alternative method for degrading MNPs. A combined research strategy is required for utilizing various technologies to enhance the remediation of MNPs. At present, the incorporation of nanotechnology, membrane technology, and enzyme technology has improved the bioremediation (BR) process. For instance, the interaction of nanoparticles such as SiO2, and fullerene 60 with microorganisms was found to decrease the lag phase and increase the biodegradation (BD) rate. The current review focuses on a comprehensive view of the microbial nanobioremediation (NBR) process to address the environmental issues caused by MNPs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abomohra, A., & Hanelt, D. (2022). Recent advances in micro-/Nanoplastic (MNPs) removal by microalgae and possible integrated routes of energy recovery. Microorganisms, 10(12), 2400.CrossRef Abomohra, A., & Hanelt, D. (2022). Recent advances in micro-/Nanoplastic (MNPs) removal by microalgae and possible integrated routes of energy recovery. Microorganisms, 10(12), 2400.CrossRef
Zurück zum Zitat Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A., & Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 771, 144719.CrossRef Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A., & Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 771, 144719.CrossRef
Zurück zum Zitat Almutairi, M. M., Gong, C., Xu, Y. G., Chang, Y., & Shi, H. (2016). Factors controlling permeability of the blood–brain barrier. Cellular and Molecular Life Sciences, 73, 57–77.CrossRef Almutairi, M. M., Gong, C., Xu, Y. G., Chang, Y., & Shi, H. (2016). Factors controlling permeability of the blood–brain barrier. Cellular and Molecular Life Sciences, 73, 57–77.CrossRef
Zurück zum Zitat Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, Sept 9–11, 2008. Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris, Sept 9–11, 2008.
Zurück zum Zitat Baig, N., Sajid, M., & Saleh, T. A. (2019). Graphene-based adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 244, 370–382.CrossRef Baig, N., Sajid, M., & Saleh, T. A. (2019). Graphene-based adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 244, 370–382.CrossRef
Zurück zum Zitat Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B Biological Sciences, 364(1526), 1985–1998.CrossRef Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B Biological Sciences, 364(1526), 1985–1998.CrossRef
Zurück zum Zitat Bhandari, V. M., & Ranade, V. V. (2014). Advanced physico-chemical methods of treatment for industrial wastewaters. In Industrial wastewater treatment, recycling and reuse (p. 81–140). Bhandari, V. M., & Ranade, V. V. (2014). Advanced physico-chemical methods of treatment for industrial wastewaters. In Industrial wastewater treatment, recycling and reuse (p. 81–140).
Zurück zum Zitat Bhattacharya, P., Lin, S., Turner, J. P., & Ke, P. C. (2010). Physical adsorption of charged plastic nanoparticles affect algal photosynthesis. Journal of Physical Chemistry C, 114(39), 16556–16561.CrossRef Bhattacharya, P., Lin, S., Turner, J. P., & Ke, P. C. (2010). Physical adsorption of charged plastic nanoparticles affect algal photosynthesis. Journal of Physical Chemistry C, 114(39), 16556–16561.CrossRef
Zurück zum Zitat Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released micro-and nano plastics in the human food production chain: experiences from nanotoxicology. Environmental Science & Technology, 49, 8932–8947. Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential health impact of environmentally released micro-and nano plastics in the human food production chain: experiences from nanotoxicology. Environmental Science & Technology, 49, 8932–8947.
Zurück zum Zitat Bradney, L., Wijesekara, H., Palansooriya, K. N., Obadamudalige, N., Bolan, N. S., Ok, Y. S., Rinklebe, J., Kim, K. H., & Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937.CrossRef Bradney, L., Wijesekara, H., Palansooriya, K. N., Obadamudalige, N., Bolan, N. S., Ok, Y. S., Rinklebe, J., Kim, K. H., & Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937.CrossRef
Zurück zum Zitat Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science, 368(6496), 1257–1260.CrossRef Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science, 368(6496), 1257–1260.CrossRef
Zurück zum Zitat Brooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade. Science Advances, 4(6), eaat0131.CrossRef Brooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade. Science Advances, 4(6), eaat0131.CrossRef
Zurück zum Zitat Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.CrossRef Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.CrossRef
Zurück zum Zitat Cao, D., Wang, X., Luo, X., Liu, G., & Zheng, H. (2017). Effects of polystyrene microplastics on the fitness of earthworms in agricultural soil, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 61(1), 012148. Cao, D., Wang, X., Luo, X., Liu, G., & Zheng, H. (2017). Effects of polystyrene microplastics on the fitness of earthworms in agricultural soil, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 61(1), 012148.
Zurück zum Zitat Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.CrossRef Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.CrossRef
Zurück zum Zitat Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research, 48(D1), D445–DD45.CrossRef Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., Ong, W. K., Paley, S., Subhraveti, P., & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research, 48(D1), D445–DD45.CrossRef
Zurück zum Zitat Chen, Z., Zhao, W. Q., Xing, R. Z., Xie, S. J., Yang, X. G., Cui, P., Lü, J., Liao, H. P., Yu, Z., Wang, S. H., & Zhou, S. G. (2019). Enhanced in situ biodegradation of micro-plastics in sewage sludge using hyper-thermophilic composting technology. Journal of Hazardous Materials, 384, 121271.CrossRef Chen, Z., Zhao, W. Q., Xing, R. Z., Xie, S. J., Yang, X. G., Cui, P., Lü, J., Liao, H. P., Yu, Z., Wang, S. H., & Zhou, S. G. (2019). Enhanced in situ biodegradation of micro-plastics in sewage sludge using hyper-thermophilic composting technology. Journal of Hazardous Materials, 384, 121271.CrossRef
Zurück zum Zitat Chen, Y. J., Chen, Y., Miao, C., Wang, Y. R., Gao, G. K., Yang, R. X., Zhu, H. J., Wang, J. H., Li, S. L., & Lan, Y. Q. (2020). Metal–organic framework-based foams for efficient microplastics removal. Journal of Materials Chemistry A, 8(29), 14644–14652.CrossRef Chen, Y. J., Chen, Y., Miao, C., Wang, Y. R., Gao, G. K., Yang, R. X., Zhu, H. J., Wang, J. H., Li, S. L., & Lan, Y. Q. (2020). Metal–organic framework-based foams for efficient microplastics removal. Journal of Materials Chemistry A, 8(29), 14644–14652.CrossRef
Zurück zum Zitat Chen, W. H., Hoang, A. T., Nižetić, S., Pandey, A., Cheng, C. K., Luque, R., Ong, H. C., Thomas, S., & Nguyen, X. P. (2022). Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection, 160, 704–733.CrossRef Chen, W. H., Hoang, A. T., Nižetić, S., Pandey, A., Cheng, C. K., Luque, R., Ong, H. C., Thomas, S., & Nguyen, X. P. (2022). Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection, 160, 704–733.CrossRef
Zurück zum Zitat Cheng, Y. L., Kim, J. G., Kim, H. B., Choi, J. H., Tsang, Y. F., & Baek, K. (2021). Occurrence and removal of micro-plastics in wastewater treatment plants and drinking water purification facilities: A review. Chemical Engineering Journal, 410, 128381.CrossRef Cheng, Y. L., Kim, J. G., Kim, H. B., Choi, J. H., Tsang, Y. F., & Baek, K. (2021). Occurrence and removal of micro-plastics in wastewater treatment plants and drinking water purification facilities: A review. Chemical Engineering Journal, 410, 128381.CrossRef
Zurück zum Zitat Chia, W. Y., Tang, D. Y. Y., Khoo, K. S., Lup, A. N. K., & Chew, K. W. (2020). Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4, 100065.CrossRef Chia, W. Y., Tang, D. Y. Y., Khoo, K. S., Lup, A. N. K., & Chew, K. W. (2020). Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4, 100065.CrossRef
Zurück zum Zitat da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the Total Environment, 566, 15–26.CrossRef da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the Total Environment, 566, 15–26.CrossRef
Zurück zum Zitat de Alves, L. F., Westmann, C. A., Lovate, G. L., de Siqueira, G. M. V., Borelli, T. C., & Guazzaroni, M. E. (2018). Metagenomic approaches for understanding new concepts in microbial science. International Journal of Genomics, 2018, 2312987.CrossRef de Alves, L. F., Westmann, C. A., Lovate, G. L., de Siqueira, G. M. V., Borelli, T. C., & Guazzaroni, M. E. (2018). Metagenomic approaches for understanding new concepts in microbial science. International Journal of Genomics, 2018, 2312987.CrossRef
Zurück zum Zitat de Sá, L. C., Luís, L. G., & Guilhermino, L. (2015). Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environmental Pollution, 196, 359–362.CrossRef de Sá, L. C., Luís, L. G., & Guilhermino, L. (2015). Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environmental Pollution, 196, 359–362.CrossRef
Zurück zum Zitat Dey, S., Anand, U., Kumar, V., Kumar, S., Ghorai, M., Ghosh, A., Kant, N., Suresh, S., Bhattacharya, S., Bontempi, E., & Bhat, S. A. (2023). Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. Environmental Research, 216, 114438.CrossRef Dey, S., Anand, U., Kumar, V., Kumar, S., Ghorai, M., Ghosh, A., Kant, N., Suresh, S., Bhattacharya, S., Bontempi, E., & Bhat, S. A. (2023). Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. Environmental Research, 216, 114438.CrossRef
Zurück zum Zitat Dhanasekar, A., & Krishnan, K. (2023). Plastic associated environmental pollution: A systematic review on biodegradation methods, challenges, and future prospects. Research Journal of Chemistry and Environment, 27(2), 122–134.CrossRef Dhanasekar, A., & Krishnan, K. (2023). Plastic associated environmental pollution: A systematic review on biodegradation methods, challenges, and future prospects. Research Journal of Chemistry and Environment, 27(2), 122–134.CrossRef
Zurück zum Zitat Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.CrossRef Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.CrossRef
Zurück zum Zitat Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of Hazardous Materials, 418, 126377.CrossRef Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of Hazardous Materials, 418, 126377.CrossRef
Zurück zum Zitat El-Morsy, E. M., Hassan, H. M., & Ahmed, E. (2017). Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere, 8(8), 1071–1087.CrossRef El-Morsy, E. M., Hassan, H. M., & Ahmed, E. (2017). Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere, 8(8), 1071–1087.CrossRef
Zurück zum Zitat Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.CrossRef Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.CrossRef
Zurück zum Zitat Ghosh, S., Qureshi, A., & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilm and degradation pathways. Contaminants in agriculture and environment: Health risks and remediation. Agro and Environment, 1, 184–199. Ghosh, S., Qureshi, A., & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilm and degradation pathways. Contaminants in agriculture and environment: Health risks and remediation. Agro and Environment, 1, 184–199.
Zurück zum Zitat Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 52, 35–41.CrossRef Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 52, 35–41.CrossRef
Zurück zum Zitat Golmohammadi, M., Musavi, S. F., Habibi, M., Maleki, R., Golgoli, M., Zargar, M., Dumée, L. F., Baroutian, S., & Razmjou, A. (2022). Molecular mechanisms of microplastics degradation: A review. Separation and Purification Technology, 309, 22906. Golmohammadi, M., Musavi, S. F., Habibi, M., Maleki, R., Golgoli, M., Zargar, M., Dumée, L. F., Baroutian, S., & Razmjou, A. (2022). Molecular mechanisms of microplastics degradation: A review. Separation and Purification Technology, 309, 22906.
Zurück zum Zitat Govindan, N., Bhuyar, P., Sundararaju, S., Feng, H. X., Rahim, M. H. A., Muniyasamy, S., & Maniam, G. P. (2021). Evaluation of microalgae’s plastic biodeterioration property by a consortium of Chlorella sp. and Cyanobacteria sp. Environmental Research, Engineering and Management, 77(3), 86–98. Govindan, N., Bhuyar, P., Sundararaju, S., Feng, H. X., Rahim, M. H. A., Muniyasamy, S., & Maniam, G. P. (2021). Evaluation of microalgae’s plastic biodeterioration property by a consortium of Chlorella sp. and Cyanobacteria sp. Environmental Research, Engineering and Management, 77(3), 86–98.
Zurück zum Zitat Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., & Rochman, C. M. (2019). Magnetic extraction of microplastics from environmental samples. Environmental Science & Technology Letters, 6(2), 68–72.CrossRef Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., & Rochman, C. M. (2019). Magnetic extraction of microplastics from environmental samples. Environmental Science & Technology Letters, 6(2), 68–72.CrossRef
Zurück zum Zitat Gu, J. D. (2021). Biodegradability of plastics: The issues, recent advances, and future perspectives. Environmental Science and Pollution Research, 28(2), 1278–1282.CrossRef Gu, J. D. (2021). Biodegradability of plastics: The issues, recent advances, and future perspectives. Environmental Science and Pollution Research, 28(2), 1278–1282.CrossRef
Zurück zum Zitat Gulnaz, O., & Dincer, S. (2009). Biodegradation of bisphenol A by Chlorella vulgaris and Aeromonas hydrophilia. Journal of Applied Biological Sciences, 3(2), 79–84. Gulnaz, O., & Dincer, S. (2009). Biodegradation of bisphenol A by Chlorella vulgaris and Aeromonas hydrophilia. Journal of Applied Biological Sciences, 3(2), 79–84.
Zurück zum Zitat Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100.CrossRef Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100.CrossRef
Zurück zum Zitat Hashmi, M. Z., Nasrullah, A., Basharat, H., & Ashfaq, M. (2022). Chemical technologies to degrade microplastic pollution. Microplastic pollution: Environmental occurrence and treatment technologies (p. 487–510). Springer international Publishing.CrossRef Hashmi, M. Z., Nasrullah, A., Basharat, H., & Ashfaq, M. (2022). Chemical technologies to degrade microplastic pollution. Microplastic pollution: Environmental occurrence and treatment technologies (p. 487–510). Springer international Publishing.CrossRef
Zurück zum Zitat Hirooka, T., Nagase, H., Uchida, K., Hiroshige, Y., Ehara, Y., Nishikawa, J. I., Nishihara, T., Miyamoto, K., & Hirata, Z. (2005). Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environmental Toxicology and Chemistry: An International Journal, 24(8), 1896–1901.CrossRef Hirooka, T., Nagase, H., Uchida, K., Hiroshige, Y., Ehara, Y., Nishikawa, J. I., Nishihara, T., Miyamoto, K., & Hirata, Z. (2005). Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environmental Toxicology and Chemistry: An International Journal, 24(8), 1896–1901.CrossRef
Zurück zum Zitat Ho, K. L. G., Pometto, A. L., Gadea-Rivas, A., Briceno, J. A., & Rojas, A. (1999). Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa University compost rows. Journal of Polymers Degradation, 7, 173–177. Ho, K. L. G., Pometto, A. L., Gadea-Rivas, A., Briceno, J. A., & Rojas, A. (1999). Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa University compost rows. Journal of Polymers Degradation, 7, 173–177.
Zurück zum Zitat Iram, D., Riaz, R., & Iqbal, R. K. (2019). Usage of potential microorganisms for degradation of plastics. Open Journal of Environmental Biology, 4(1), 7–15. Iram, D., Riaz, R., & Iqbal, R. K. (2019). Usage of potential microorganisms for degradation of plastics. Open Journal of Environmental Biology, 4(1), 7–15.
Zurück zum Zitat Islam, S., Apitius, L., Jakob, F., & Schwaneberg, U. (2019). Targeting micro-plastic particles in the void of diluted suspensions. Environment International, 123, 428–435.CrossRef Islam, S., Apitius, L., Jakob, F., & Schwaneberg, U. (2019). Targeting micro-plastic particles in the void of diluted suspensions. Environment International, 123, 428–435.CrossRef
Zurück zum Zitat Jaiswal, S., Sharma, B., & Shukla, P. (2020). Integrated approaches in microbial degradation of plastics. Environmental Technology & Innovation, 17, 100567.CrossRef Jaiswal, S., Sharma, B., & Shukla, P. (2020). Integrated approaches in microbial degradation of plastics. Environmental Technology & Innovation, 17, 100567.CrossRef
Zurück zum Zitat Jeon, H. J., & Kim, M. N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115, 244–249.CrossRef Jeon, H. J., & Kim, M. N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115, 244–249.CrossRef
Zurück zum Zitat Judy, J. D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R., & Kirby, J. K. (2019). Micro-plastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252(1), 522–531.CrossRef Judy, J. D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R., & Kirby, J. K. (2019). Micro-plastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252(1), 522–531.CrossRef
Zurück zum Zitat Kay, P., Hiscoe, R., Moberley, I., Bajic, L., & McKenna, N. (2018). Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 25, 20264–20267.CrossRef Kay, P., Hiscoe, R., Moberley, I., Bajic, L., & McKenna, N. (2018). Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 25, 20264–20267.CrossRef
Zurück zum Zitat Kelly, J. J., London, M. G., McCormick, A. R., Rojas, M., Scott, J. W., & Hoellein, T. J. (2021). Wastewater treatment alters microbial colonization of micro-plastics. PLoS One, 16(1), e0244443.CrossRef Kelly, J. J., London, M. G., McCormick, A. R., Rojas, M., Scott, J. W., & Hoellein, T. J. (2021). Wastewater treatment alters microbial colonization of micro-plastics. PLoS One, 16(1), e0244443.CrossRef
Zurück zum Zitat Kim, J. W., Park, S. B., Tran, Q. G., Cho, D. H., Choi, D. Y., Lee, Y. J., & Kim, H. S. (2020). Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microbial Cell Factories, 19(1), 1–9.CrossRef Kim, J. W., Park, S. B., Tran, Q. G., Cho, D. H., Choi, D. Y., Lee, Y. J., & Kim, H. S. (2020). Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microbial Cell Factories, 19(1), 1–9.CrossRef
Zurück zum Zitat Knott, B. C., Erickson Mark, D., Allen, E., Gado, J. E., Graham, R., Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J. J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C. J., Copié, V., Payne, C. M., Woodcock, H. L., Donohoe, B. S., Beckham, G. T., & McGeehan, J. E. (2020). Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences, 117(41), 25476–25485.CrossRef Knott, B. C., Erickson Mark, D., Allen, E., Gado, J. E., Graham, R., Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J. J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C. J., Copié, V., Payne, C. M., Woodcock, H. L., Donohoe, B. S., Beckham, G. T., & McGeehan, J. E. (2020). Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences, 117(41), 25476–25485.CrossRef
Zurück zum Zitat Krishnan, K. (2023). A systematic review on the impact of micro-nanoplastics exposure on human health and diseases. Biointerface Research in Applied Chemistry, 13, 1–12. Krishnan, K. (2023). A systematic review on the impact of micro-nanoplastics exposure on human health and diseases. Biointerface Research in Applied Chemistry, 13, 1–12.
Zurück zum Zitat Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS One, 10(7), e0131773.CrossRef Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS One, 10(7), e0131773.CrossRef
Zurück zum Zitat Kumar, R. V., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(381), 2. Kumar, R. V., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(381), 2.
Zurück zum Zitat Kumar, M., Kumar, M., Pandey, A., & Thakur, I. S. (2019). Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Scientific Reports, 9(1), 1–12. Kumar, M., Kumar, M., Pandey, A., & Thakur, I. S. (2019). Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Scientific Reports, 9(1), 1–12.
Zurück zum Zitat Lagarde, F., Olivier, O., Zanella, M., Daniel, P., Hiard, S., & Caruso, A. (2016). Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215, 331–339.CrossRef Lagarde, F., Olivier, O., Zanella, M., Daniel, P., Hiard, S., & Caruso, A. (2016). Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215, 331–339.CrossRef
Zurück zum Zitat Lares, M., Ncibi, M. C., Markus, S., & Mika, S. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236–246.CrossRef Lares, M., Ncibi, M. C., Markus, S., & Mika, S. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236–246.CrossRef
Zurück zum Zitat Lear, G., Kingsbury, J. M., Franchini, S., Gambarini, V., Maday, S. D. M., Wallbank, J. A., Weaver, L., & Pantos, O. (2021). Plastics and the microbiome: Impacts and solutions. Environmental Microbiology, 16(1), 1–19. Lear, G., Kingsbury, J. M., Franchini, S., Gambarini, V., Maday, S. D. M., Wallbank, J. A., Weaver, L., & Pantos, O. (2021). Plastics and the microbiome: Impacts and solutions. Environmental Microbiology, 16(1), 1–19.
Zurück zum Zitat Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1), 15611.CrossRef Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1), 15611.CrossRef
Zurück zum Zitat Lebreton, L., Egger, M., & Slat, B. (2019). A global mass budget for positively buoyant macroplastic debris in the ocean. Scientific Reports, 9(1), 12922.CrossRef Lebreton, L., Egger, M., & Slat, B. (2019). A global mass budget for positively buoyant macroplastic debris in the ocean. Scientific Reports, 9(1), 12922.CrossRef
Zurück zum Zitat Lehner, R., Wohlleben, W., Septiadi, D., Landsiedel, R., Petri-Fink, A., & Rothen- Rutishauser, B. (2020). A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Archives of Toxicology, 94, 2463–2479.CrossRef Lehner, R., Wohlleben, W., Septiadi, D., Landsiedel, R., Petri-Fink, A., & Rothen- Rutishauser, B. (2020). A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Archives of Toxicology, 94, 2463–2479.CrossRef
Zurück zum Zitat Li, Z., Guo, Z., Zhang, T., Li, Q., Chen, J., Ji, W., Liu, C., & Wei, Y. (2021). Fabrication of in situ ZIF-67 grown on alginate hydrogels and its application for enhancing Cu (II) adsorption from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 207, 112036.CrossRef Li, Z., Guo, Z., Zhang, T., Li, Q., Chen, J., Ji, W., Liu, C., & Wei, Y. (2021). Fabrication of in situ ZIF-67 grown on alginate hydrogels and its application for enhancing Cu (II) adsorption from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 207, 112036.CrossRef
Zurück zum Zitat Liebezeit, G., & Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A, 31(9), 1574–1578.CrossRef Liebezeit, G., & Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A, 31(9), 1574–1578.CrossRef
Zurück zum Zitat Maheswaran, B., Al-Ansari, M., Al-Humaid, L., Raj, J. S., Kim, W., Karmegam, N., & Rafi, K. M. (2023). In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment. Chemosphere, 310, 136757.CrossRef Maheswaran, B., Al-Ansari, M., Al-Humaid, L., Raj, J. S., Kim, W., Karmegam, N., & Rafi, K. M. (2023). In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment. Chemosphere, 310, 136757.CrossRef
Zurück zum Zitat Manabe, M., Tatarazako, N., & Kinoshita, M. (2011). Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae. Aquatic Toxicology, 105(3–4), 576–581.CrossRef Manabe, M., Tatarazako, N., & Kinoshita, M. (2011). Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae. Aquatic Toxicology, 105(3–4), 576–581.CrossRef
Zurück zum Zitat Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., & Mori, N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752, 141959.CrossRef Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., & Mori, N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752, 141959.CrossRef
Zurück zum Zitat Mitrano, D. M., Beltzung, A., Frehland, S., Schmiedgruber, M., Cingolani, A., & Schmidt, F. (2019). Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nature Nanotechnology, 14(4), 362–368.CrossRef Mitrano, D. M., Beltzung, A., Frehland, S., Schmiedgruber, M., Cingolani, A., & Schmidt, F. (2019). Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nature Nanotechnology, 14(4), 362–368.CrossRef
Zurück zum Zitat Negoro, S., Shibata, N., Tanaka, Y., Yasuhira, K., Shibata, H., Hashimoto, H., Lee, Y. H., Oshima, S., Santa, R., Mochiji, K., & Goto, Y. (2012). Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. The Journal of Biological Chemistry, 287(7), 5079–5090.CrossRef Negoro, S., Shibata, N., Tanaka, Y., Yasuhira, K., Shibata, H., Hashimoto, H., Lee, Y. H., Oshima, S., Santa, R., Mochiji, K., & Goto, Y. (2012). Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. The Journal of Biological Chemistry, 287(7), 5079–5090.CrossRef
Zurück zum Zitat Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388.
Zurück zum Zitat Ojha, N., Pradhan, N., Singh, S., Barla, A., Shrivastava, A., Khatua, P., Rai, V., & Bose, S. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7(1), 39515.CrossRef Ojha, N., Pradhan, N., Singh, S., Barla, A., Shrivastava, A., Khatua, P., Rai, V., & Bose, S. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7(1), 39515.CrossRef
Zurück zum Zitat Paço, A., Duarte, K., da Costa, J. P., Santos, P. S., Pereira, R., Pereira, M. E., Freitas, A. C., Duarte, A. C., & Rocha-Santos, T. A. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586, 10–15.CrossRef Paço, A., Duarte, K., da Costa, J. P., Santos, P. S., Pereira, R., Pereira, M. E., Freitas, A. C., Duarte, A. C., & Rocha-Santos, T. A. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586, 10–15.CrossRef
Zurück zum Zitat Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P. A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542. Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P. A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542.
Zurück zum Zitat Pathak, V. M., & Navneet. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 15.CrossRef Pathak, V. M., & Navneet. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 15.CrossRef
Zurück zum Zitat Peng, L., Mehmood, T., Bao, R., Wang, Z., & Fu, D. (2022). An overview of micro (nano) plastics in the environment: Sampling, identification, risk assessment and control. Sustainability, 14(21), 14338.CrossRef Peng, L., Mehmood, T., Bao, R., Wang, Z., & Fu, D. (2022). An overview of micro (nano) plastics in the environment: Sampling, identification, risk assessment and control. Sustainability, 14(21), 14338.CrossRef
Zurück zum Zitat Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 643, 1644–1651.CrossRef Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 643, 1644–1651.CrossRef
Zurück zum Zitat Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126.CrossRef Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126.CrossRef
Zurück zum Zitat Priya, A., Dutta, K., & Daverey, A. (2021). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnology, 97(2), 381–390.CrossRef Priya, A., Dutta, K., & Daverey, A. (2021). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnology, 97(2), 381–390.CrossRef
Zurück zum Zitat Purohit, J., Chattopadhyay, A., & Teli, B. (2020). Metagenomic exploration of plastic degrading microbes for biotechnological application. Current Genomics, 21(4), 253–270. Purohit, J., Chattopadhyay, A., & Teli, B. (2020). Metagenomic exploration of plastic degrading microbes for biotechnological application. Current Genomics, 21(4), 253–270.
Zurück zum Zitat Raddadi, N., & Fava, F. (2019). Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 679, 148–158.CrossRef Raddadi, N., & Fava, F. (2019). Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 679, 148–158.CrossRef
Zurück zum Zitat Rai, P. K., Lee, J., Brown, R. J., & Kim, K. H. (2021). Micro-and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. Journal of Cleaner Production, 291, 125240.CrossRef Rai, P. K., Lee, J., Brown, R. J., & Kim, K. H. (2021). Micro-and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. Journal of Cleaner Production, 291, 125240.CrossRef
Zurück zum Zitat Rana, K. I. (2019). Usage of potential micro-organisms for degradation of plastics. Journal of Environmental Biology, 4, 7–15. Rana, K. I. (2019). Usage of potential micro-organisms for degradation of plastics. Journal of Environmental Biology, 4, 7–15.
Zurück zum Zitat Rehse, S., Kloas, W., & Zarfl, C. (2016). Short-term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia magna. Chemosphere, 153, 91–99.CrossRef Rehse, S., Kloas, W., & Zarfl, C. (2016). Short-term exposure with high concentrations of pristine microplastic particles leads to immobilization of Daphnia magna. Chemosphere, 153, 91–99.CrossRef
Zurück zum Zitat Ricardo, I. A., Alberto, E. A., Júnior, A. H. S., Macuvele, D. L. P., Padoin, N., Soares, C., Riella, H. G., Starling, M. C. V. M., & Trovó, A. G. (2021). A critical review on micro-plastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices. Chemical Engineering Journal, 424, 130282.CrossRef Ricardo, I. A., Alberto, E. A., Júnior, A. H. S., Macuvele, D. L. P., Padoin, N., Soares, C., Riella, H. G., Starling, M. C. V. M., & Trovó, A. G. (2021). A critical review on micro-plastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices. Chemical Engineering Journal, 424, 130282.CrossRef
Zurück zum Zitat Roex, E., Vethaak, D., Leslie, H., & Kreuk, M. D. (2013). Potential risk of microplastics in the freshwater environment. STOWA Amersfoort. Roex, E., Vethaak, D., Leslie, H., & Kreuk, M. D. (2013). Potential risk of microplastics in the freshwater environment. STOWA Amersfoort.
Zurück zum Zitat Rossi, G., Barnoud, J., & Monticelli, L. (2014). Polystyrene nanoparticles perturb lipid membranes. Journal of Physical Chemistry Letters, 5(1), 241–246.CrossRef Rossi, G., Barnoud, J., & Monticelli, L. (2014). Polystyrene nanoparticles perturb lipid membranes. Journal of Physical Chemistry Letters, 5(1), 241–246.CrossRef
Zurück zum Zitat Rout, P. R., Mohanty, A., Sharma, A., Miglani, M., Liu, D., & Varjani, S. (2022). Micro-and nanoplastics removal mechanisms in wastewater treatment plants: A review. Journal of Hazardous Materials Advances, 6, 100070.CrossRef Rout, P. R., Mohanty, A., Sharma, A., Miglani, M., Liu, D., & Varjani, S. (2022). Micro-and nanoplastics removal mechanisms in wastewater treatment plants: A review. Journal of Hazardous Materials Advances, 6, 100070.CrossRef
Zurück zum Zitat Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.CrossRef Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.CrossRef
Zurück zum Zitat Sah, A., Kapri, A., Zaidi, M. G. H., Negi, H., & Goel, R. (2010). Implications of fullerene-60 upon in-vitro LDPE biodegradation. Journal of Microbiology and Biotechnology, 20(5), 908–916.CrossRef Sah, A., Kapri, A., Zaidi, M. G. H., Negi, H., & Goel, R. (2010). Implications of fullerene-60 upon in-vitro LDPE biodegradation. Journal of Microbiology and Biotechnology, 20(5), 908–916.CrossRef
Zurück zum Zitat Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815.CrossRef Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815.CrossRef
Zurück zum Zitat Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), 5390.CrossRef Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), 5390.CrossRef
Zurück zum Zitat Saraji, M., & Ghani, M. (2014). Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices. Journal of Chromatography A, 1366, 24–30.CrossRef Saraji, M., & Ghani, M. (2014). Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices. Journal of Chromatography A, 1366, 24–30.CrossRef
Zurück zum Zitat Sarkar, D. J., Das Sarkar, S., Das, B. K., Praharaj, J. K., Mahajan, D. K., Purokait, B., Mohanty, T. R., Mohanty, D., Gogoi, P., Kumar, S., & Behera, B. K. (2021). Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. Journal of Hazardous Materials, 413, 125347.CrossRef Sarkar, D. J., Das Sarkar, S., Das, B. K., Praharaj, J. K., Mahajan, D. K., Purokait, B., Mohanty, T. R., Mohanty, D., Gogoi, P., Kumar, S., & Behera, B. K. (2021). Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. Journal of Hazardous Materials, 413, 125347.CrossRef
Zurück zum Zitat Sarmah, P., & Rout, J. (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25, 33508–33520.CrossRef Sarmah, P., & Rout, J. (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25, 33508–33520.CrossRef
Zurück zum Zitat Sarmah, P., & Rout, J. (2018a). Algal colonization on polythene carry bags in a domestic solid waste dumping site of Silchar town in Assam. Phykos, 48(67), e77. Sarmah, P., & Rout, J. (2018a). Algal colonization on polythene carry bags in a domestic solid waste dumping site of Silchar town in Assam. Phykos, 48(67), e77.
Zurück zum Zitat Sarmah, P., & Rout, J. (2018b). Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India). Current Trends In Biotechnology And Pharmacy, 12(1), 7–15. Sarmah, P., & Rout, J. (2018b). Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India). Current Trends In Biotechnology And Pharmacy, 12(1), 7–15.
Zurück zum Zitat Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with nonculturable microbes. Applied Microbiology and Biotechnology, 75, 955–962.CrossRef Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with nonculturable microbes. Applied Microbiology and Biotechnology, 75, 955–962.CrossRef
Zurück zum Zitat Shao, H., Chen, M., Fei, X., Zhang, R., Zhong, Y., Ni, W., & Tan, X. (2019). Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms, 7(10), 379.CrossRef Shao, H., Chen, M., Fei, X., Zhang, R., Zhong, Y., Ni, W., & Tan, X. (2019). Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms, 7(10), 379.CrossRef
Zurück zum Zitat Sharma, B., Rawat, H., & Pooja, S. R. (2017). Bioremediation-A progressive approach toward reducing plastic wastes. International Journal of Current Microbiology and Applied Sciences, 6(12), 1116–1131.CrossRef Sharma, B., Rawat, H., & Pooja, S. R. (2017). Bioremediation-A progressive approach toward reducing plastic wastes. International Journal of Current Microbiology and Applied Sciences, 6(12), 1116–1131.CrossRef
Zurück zum Zitat Shi, X., Zhang, X., Gao, W., Zhang, Y., & He, D. (2022). Removal of microplastics from water by magnetic nano-Fe3O4. Science of the Total Environment, 802, 149838.CrossRef Shi, X., Zhang, X., Gao, W., Zhang, Y., & He, D. (2022). Removal of microplastics from water by magnetic nano-Fe3O4. Science of the Total Environment, 802, 149838.CrossRef
Zurück zum Zitat Shin, Y. H., Jung, I., Park, H., Pyeon, J. J., Son, J. G., Koo, C. M., Kim, S., & Kang, C. Y. (2018). Mechanical fatigue resistance of piezoelectric PVDF polymers. Micromachines, 9(10), 503.CrossRef Shin, Y. H., Jung, I., Park, H., Pyeon, J. J., Son, J. G., Koo, C. M., Kim, S., & Kang, C. Y. (2018). Mechanical fatigue resistance of piezoelectric PVDF polymers. Micromachines, 9(10), 503.CrossRef
Zurück zum Zitat Silva, A. L. P. (2021). New frontiers in remediation of (micro) plastics. Current Opinion in Green and Sustainable Chemistry, 28, 100443.CrossRef Silva, A. L. P. (2021). New frontiers in remediation of (micro) plastics. Current Opinion in Green and Sustainable Chemistry, 28, 100443.CrossRef
Zurück zum Zitat Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72, 346–352. Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72, 346–352.
Zurück zum Zitat Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.
Zurück zum Zitat Sulaiman, S., Yamato, S., Kanaya, E., Kim, J. J., Koga, Y., Takano, K., & Kanaya, S. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562.CrossRef Sulaiman, S., Yamato, S., Kanaya, E., Kim, J. J., Koga, Y., Takano, K., & Kanaya, S. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562.CrossRef
Zurück zum Zitat Syranidou, E., Karkanorachaki, K., Amorotti, F., Repouskou, E., Kroll, K., Kolvenbach, B., Corvini, P. F., Fava, F., & Kalogerakis, N. (2017). Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLOS One, 12(8), e0183984. Syranidou, E., Karkanorachaki, K., Amorotti, F., Repouskou, E., Kroll, K., Kolvenbach, B., Corvini, P. F., Fava, F., & Kalogerakis, N. (2017). Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLOS One, 12(8), e0183984.
Zurück zum Zitat Syranidou, E., Karkanorachaki, K., Amorotti, F., Avgeropoulos, A., Kolvenbach, B., Zhou, N. Y., Fava, F., Corvini, P. F. X., & Kalogerakis, N. (2019). Biodegradation of mixture of plastic films by tailored marine consortia. Journal of Hazardous Materials, 375, 33–42.CrossRef Syranidou, E., Karkanorachaki, K., Amorotti, F., Avgeropoulos, A., Kolvenbach, B., Zhou, N. Y., Fava, F., Corvini, P. F. X., & Kalogerakis, N. (2019). Biodegradation of mixture of plastic films by tailored marine consortia. Journal of Hazardous Materials, 375, 33–42.CrossRef
Zurück zum Zitat Talvitie, J., Mikola, A., Koistinen, A., & Setala, O. (2017). Solutions to microplastic pollution- removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401–407.CrossRef Talvitie, J., Mikola, A., Koistinen, A., & Setala, O. (2017). Solutions to microplastic pollution- removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401–407.CrossRef
Zurück zum Zitat Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: Current knowledge and future research need–a critical review. Environmental Science: Nano, 5(2), 257–278. Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: Current knowledge and future research need–a critical review. Environmental Science: Nano, 5(2), 257–278.
Zurück zum Zitat Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., & Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal, 406, 126804.CrossRef Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., & Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal, 406, 126804.CrossRef
Zurück zum Zitat Tian, L., Kolvenbach, B., Corvini, N., Wang, S., Tavanaie, N., Wang, L., Ma, Y., Scheu, S., Corvini, P. F. X., & Ji, R. (2017). Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnology, 38, 101–105.CrossRef Tian, L., Kolvenbach, B., Corvini, N., Wang, S., Tavanaie, N., Wang, L., Ma, Y., Scheu, S., Corvini, P. F. X., & Ji, R. (2017). Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnology, 38, 101–105.CrossRef
Zurück zum Zitat Tiwari, N., Santhiya, D., & Sharma, J. G. (2020). Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environmental Pollution, 265, 115044.CrossRef Tiwari, N., Santhiya, D., & Sharma, J. G. (2020). Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environmental Pollution, 265, 115044.CrossRef
Zurück zum Zitat Uchiyama, T., & Miyazaki, K. (2009). Functional metagenomics for enzyme discovery: Challenges to efficient screening. Current Opinion in Biotechnology, 20(6), 616–622.CrossRef Uchiyama, T., & Miyazaki, K. (2009). Functional metagenomics for enzyme discovery: Challenges to efficient screening. Current Opinion in Biotechnology, 20(6), 616–622.CrossRef
Zurück zum Zitat Vazquez-Núnez, E., Molina-Guerrero, C. E., Pena-Castro, J. M., Fernandez-Luqueno, F., & de la Rosa-Alvarez, M. (2020). Use of nanotechnology for the bioremediation of contaminants: A review. PRO, 8(7), 826. Vazquez-Núnez, E., Molina-Guerrero, C. E., Pena-Castro, J. M., Fernandez-Luqueno, F., & de la Rosa-Alvarez, M. (2020). Use of nanotechnology for the bioremediation of contaminants: A review. PRO, 8(7), 826.
Zurück zum Zitat Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1), 8670.CrossRef Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1), 8670.CrossRef
Zurück zum Zitat Vieira, R. H., & Volesky, B. (2000). Biosorption: A solution to pollution? International Microbiology, 3(1), 17–24. Vieira, R. H., & Volesky, B. (2000). Biosorption: A solution to pollution? International Microbiology, 3(1), 17–24.
Zurück zum Zitat Vivi, V. K., Martins-Franchetti, S. M., & Attili-Angelis, D. (2019). Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica, 64, 1–7.CrossRef Vivi, V. K., Martins-Franchetti, S. M., & Attili-Angelis, D. (2019). Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica, 64, 1–7.CrossRef
Zurück zum Zitat Wan, H., Wang, J., Sheng, X., Yan, J., Zhang, W., & Xu, Y. (2022). Removal of polystyrene microplastics from aqueous solution using the metal–organic framework material of ZIF-67. Toxics, 10(2), 70.CrossRef Wan, H., Wang, J., Sheng, X., Yan, J., Zhang, W., & Xu, Y. (2022). Removal of polystyrene microplastics from aqueous solution using the metal–organic framework material of ZIF-67. Toxics, 10(2), 70.CrossRef
Zurück zum Zitat Wang, Z., Sun, C., Li, F., & Chen, L. (2021). Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chemical Engineering Journal, 415, 129006.CrossRef Wang, Z., Sun, C., Li, F., & Chen, L. (2021). Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chemical Engineering Journal, 415, 129006.CrossRef
Zurück zum Zitat Wang, P., Liu, J., Han, S., Wang, Y., Duan, Y., Liu, T., Hou, L., Zhang, Z., Li, L., & Lin, Y. (2023). Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. Journal of Hazardous Materials, 442, 30045.CrossRef Wang, P., Liu, J., Han, S., Wang, Y., Duan, Y., Liu, T., Hou, L., Zhang, Z., Li, L., & Lin, Y. (2023). Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. Journal of Hazardous Materials, 442, 30045.CrossRef
Zurück zum Zitat Ward, J. E., & Kach, D. J. (2009). Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research, 68(3), 137–142.CrossRef Ward, J. E., & Kach, D. J. (2009). Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research, 68(3), 137–142.CrossRef
Zurück zum Zitat Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593. Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.
Zurück zum Zitat Wróbel, M., Szymańska, S., Kowalkowski, T., & Hrynkiewicz, K. (2023). Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiological Research, 267, 127251.CrossRef Wróbel, M., Szymańska, S., Kowalkowski, T., & Hrynkiewicz, K. (2023). Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiological Research, 267, 127251.CrossRef
Zurück zum Zitat Wu, M., Liu, W., & Liang, Y. (2019). Probing size characteristics of disinfection by-products precursors during the bioavailability study of soluble microbial products using ultrafiltration fractionation. Ecotoxicology and Environmental Safety, 175, 1–7.CrossRef Wu, M., Liu, W., & Liang, Y. (2019). Probing size characteristics of disinfection by-products precursors during the bioavailability study of soluble microbial products using ultrafiltration fractionation. Ecotoxicology and Environmental Safety, 175, 1–7.CrossRef
Zurück zum Zitat Wu, X., Lu, J., Du, M., Xu, X., Beiyuan, J., Sarkar, B., Bolan, N., Xu, W., Xu, S., Chen, X., & Wu, F. (2021). Particulate plastics-plant interaction in soil and its implications: A review. Science of the Total Environment, 792, 148337.CrossRef Wu, X., Lu, J., Du, M., Xu, X., Beiyuan, J., Sarkar, B., Bolan, N., Xu, W., Xu, S., Chen, X., & Wu, F. (2021). Particulate plastics-plant interaction in soil and its implications: A review. Science of the Total Environment, 792, 148337.CrossRef
Zurück zum Zitat Yadav, H., Sethulekshmi, S., & Shriwastav, A. (2022). Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environmental Research, 214, 113735.CrossRef Yadav, H., Sethulekshmi, S., & Shriwastav, A. (2022). Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environmental Research, 214, 113735.CrossRef
Zurück zum Zitat Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2), 323–327.CrossRef Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2), 323–327.CrossRef
Zurück zum Zitat Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20), 12087–12093.CrossRef Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20), 12087–12093.CrossRef
Zurück zum Zitat Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6279), 1196–1199.CrossRef Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6279), 1196–1199.CrossRef
Zurück zum Zitat You, D., Zhao, Y., Yang, W., Pan, Q., & Li, J. (2022). Metal-organic framework-based wood aerogel for effective removal of micro/nano plastics. Chemical Research in Chinese Universities, 38(1), 186–191.CrossRef You, D., Zhao, Y., Yang, W., Pan, Q., & Li, J. (2022). Metal-organic framework-based wood aerogel for effective removal of micro/nano plastics. Chemical Research in Chinese Universities, 38(1), 186–191.CrossRef
Zurück zum Zitat Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of micro-plastics/plastics. Science of the Total Environment, 715, 136968.CrossRef Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of micro-plastics/plastics. Science of the Total Environment, 715, 136968.CrossRef
Zurück zum Zitat Zhang, H., Kuo, Y. Y., Gerecke, A. C., & Wang, J. (2012). Environmental Science & Technology, 46(20), 10990–10996.CrossRef Zhang, H., Kuo, Y. Y., Gerecke, A. C., & Wang, J. (2012). Environmental Science & Technology, 46(20), 10990–10996.CrossRef
Zurück zum Zitat Zhang, B., He, Y., Zhu, H., Huang, X., Bai, X., Kannan, K., & Zhang, T. (2020). Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environment International, 136, 105407.CrossRef Zhang, B., He, Y., Zhu, H., Huang, X., Bai, X., Kannan, K., & Zhang, T. (2020). Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environment International, 136, 105407.CrossRef
Zurück zum Zitat Zhang, Y., Zhou, G., Yue, J., Xing, X., Yang, Z., Wang, X., Wang, Q., & Zhang, J. (2021). Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids. Science of the Total Environment, 800, 149589.CrossRef Zhang, Y., Zhou, G., Yue, J., Xing, X., Yang, Z., Wang, X., Wang, Q., & Zhang, J. (2021). Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids. Science of the Total Environment, 800, 149589.CrossRef
Zurück zum Zitat Zhao, H., Huang, X., Wang, L., Zhao, X., Yan, F., Yang, Y., Li, G., Gao, P., & Ji, P. (2022). Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: Adsorbability, mechanism, and reusability. Chemical Engineering Journal, 430, 133122.CrossRef Zhao, H., Huang, X., Wang, L., Zhao, X., Yan, F., Yang, Y., Li, G., Gao, P., & Ji, P. (2022). Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: Adsorbability, mechanism, and reusability. Chemical Engineering Journal, 430, 133122.CrossRef
Zurück zum Zitat Zheng, B., Li, B., Wan, H., Lin, X., & Cai, Y. (2022). Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment. Journal of Hazardous Materials, 431, 128611.CrossRef Zheng, B., Li, B., Wan, H., Lin, X., & Cai, Y. (2022). Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment. Journal of Hazardous Materials, 431, 128611.CrossRef
Zurück zum Zitat Zhou, Y., Kumar, M., Sarsaiya, S., Sirohi, R., Awasthi, S. K., Sindhu, R., Binod, P., Pandey, A., Bolan, N. S., Zhang, Z., & Singh, L. (2022). Challenges and opportunities in bioremediation of micro-nano plastics: a review. Science of the Total Environment, 802, 149823. Zhou, Y., Kumar, M., Sarsaiya, S., Sirohi, R., Awasthi, S. K., Sindhu, R., Binod, P., Pandey, A., Bolan, N. S., Zhang, Z., & Singh, L. (2022). Challenges and opportunities in bioremediation of micro-nano plastics: a review. Science of the Total Environment, 802, 149823.
Zurück zum Zitat Zhou, Y., Kumar, M., Sarsaiya, S., Sirohi, R., Awasthi, S. K., Sindhu, R., Binod, P., Pandey, A., Bolan, N. S., Zhang, Z., & Singh, L. (2022). Challenges and opportunities in bioremediation of micro-nano plastics: A review co-release of hexabromocyclododecane (HBCD) and nano-and microparticles from thermal cutting of polystyrene foams. Science of the Total Environment, 802, 149823.CrossRef Zhou, Y., Kumar, M., Sarsaiya, S., Sirohi, R., Awasthi, S. K., Sindhu, R., Binod, P., Pandey, A., Bolan, N. S., Zhang, Z., & Singh, L. (2022). Challenges and opportunities in bioremediation of micro-nano plastics: A review co-release of hexabromocyclododecane (HBCD) and nano-and microparticles from thermal cutting of polystyrene foams. Science of the Total Environment, 802, 149823.CrossRef
Zurück zum Zitat Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. (2018). Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environmental Pollution, 236, 425–431.CrossRef Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. (2018). Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environmental Pollution, 236, 425–431.CrossRef
Zurück zum Zitat Zinicovscaia, I. (2016). Conventional methods of wastewater treatment. In Cyanobacteria for bioremediation of wastewaters (pp. 17–25). Springer.CrossRef Zinicovscaia, I. (2016). Conventional methods of wastewater treatment. In Cyanobacteria for bioremediation of wastewaters (pp. 17–25). Springer.CrossRef
Metadaten
Titel
Microbial Nanobioremediation of Micro-Nanoplastics: Current Strategies, Challenges, and Future Prospects
verfasst von
Jyothirmayee Kola Pratap
Kannabiran Krishnan
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51967-3_17