Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2020

30.09.2020

Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones

verfasst von: Junjun Cui, Wenting Zhu, Zhenye Chen, Liqing Chen

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To obtain the correlation of microstructural characteristics and toughness in a novel high-strength low-carbon bainitic structural steel with medium and heavy plate after multipass welding, a welding thermal simulation experiment was conducted to simulate different subregions in the reheated coarse-grained heat-affected zones (CGHAZ). The microstructure evolution was then analyzed and factors that influence the fracture behavior were studied. The results show that the brittle zone appeared in subcritical reheated CGHAZ, and the fractured morphology was cleavage fracture. Supercritical reheated CGHAZ had the highest impact toughness, and the fractured morphology was primarily the ductile fracture with dimples formed via the micropore polycondensation mechanism. With an increase in the secondary pass welding thermal cycle peak temperature (tp2), the average length size of martensite and austenite (M-A) decreased from 9 to 2 μm. The coarsening of M-A constituents was the main reason for decrease in the crack initiation absorbed energy. A large number of retained austenite and cementite precipitates in subcritical reheated CGHAZ clearly worsened the impact toughness, and the massive austenite and cementite precipitates more than offset the beneficial effects of high-angle boundaries. This phenomenon led to disappearance of the effect of high-angle grain boundary of prior austenite and lath bainite on arresting crack propagation. In supercritical reheated CGHAZ, crack propagation absorbed energy was increased because of grain refinement, fine precipitates, lamellar residual austenite at corners, and high-angle grain boundary.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Aleksić, L. Milović, I. Blačić, T. Vuherer, and S. Bulatović: Eng. Failure Anal., 2019, vol. 104, pp. 1094-106.CrossRef V. Aleksić, L. Milović, I. Blačić, T. Vuherer, and S. Bulatović: Eng. Failure Anal., 2019, vol. 104, pp. 1094-106.CrossRef
2.
Zurück zum Zitat J.J. Cui, W.T. Zhu, Z.Y. Chen, and L.Q. Chen: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 169-77.CrossRef J.J. Cui, W.T. Zhu, Z.Y. Chen, and L.Q. Chen: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 169-77.CrossRef
3.
Zurück zum Zitat X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3669-79.CrossRef X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3669-79.CrossRef
4.
Zurück zum Zitat P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Mater. Sci. Technol., 2012, vol. 28, pp. 1261-68.CrossRef P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Mater. Sci. Technol., 2012, vol. 28, pp. 1261-68.CrossRef
5.
Zurück zum Zitat S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini: Mater. Des., 2010, vol. 31, pp. 2948-55.CrossRef S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini: Mater. Des., 2010, vol. 31, pp. 2948-55.CrossRef
6.
Zurück zum Zitat J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 590, pp. 323-28.CrossRef J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 590, pp. 323-28.CrossRef
7.
Zurück zum Zitat Y.L. Zhou, T. Jia, X.J. Zhang, and R.D.K. Misra: J. Mater. Process. Technol., 2015, vol. 219, pp. 314-20.CrossRef Y.L. Zhou, T. Jia, X.J. Zhang, and R.D.K. Misra: J. Mater. Process. Technol., 2015, vol. 219, pp. 314-20.CrossRef
8.
Zurück zum Zitat L.Y. Lan, C.L. Qiu, H.Y. Song, and D.W. Zhao: Mater. Lett., 2014, vol. 125, pp. 86-88.CrossRef L.Y. Lan, C.L. Qiu, H.Y. Song, and D.W. Zhao: Mater. Lett., 2014, vol. 125, pp. 86-88.CrossRef
9.
Zurück zum Zitat Q.M. Jiang, X.Q. Zhang, S. Hu, L.Q. Chen, and W.H. Sun: Welding Technology (In Chinese), 2015, vol. 44, pp. 5-9. Q.M. Jiang, X.Q. Zhang, S. Hu, L.Q. Chen, and W.H. Sun: Welding Technology (In Chinese), 2015, vol. 44, pp. 5-9.
10.
Zurück zum Zitat Y. You, C.J. Shang, L. Chen, and S. Subramanian: Mater. Des., 2013, vol. 43, pp. 485-91.CrossRef Y. You, C.J. Shang, L. Chen, and S. Subramanian: Mater. Des., 2013, vol. 43, pp. 485-91.CrossRef
11.
Zurück zum Zitat L.Y. Lan, C.L. Qiu, D.W. Zhao, C.M. Li, X.H. Gao, and L.X. Du: Acta Metall. Sin. (in Chinese), 2011, vol. 47, pp. 1046-54. L.Y. Lan, C.L. Qiu, D.W. Zhao, C.M. Li, X.H. Gao, and L.X. Du: Acta Metall. Sin. (in Chinese), 2011, vol. 47, pp. 1046-54.
12.
Zurück zum Zitat A.M. Guo, R.D.K. Misra, J.B. Liu, L. Chen, X.L. He, and S.J. Jansto: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6440-48.CrossRef A.M. Guo, R.D.K. Misra, J.B. Liu, L. Chen, X.L. He, and S.J. Jansto: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6440-48.CrossRef
13.
Zurück zum Zitat P.A. Lambert, A.F. Gourgues, J. Besson, T. Sturel, and A. Pinear: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039-53.CrossRef P.A. Lambert, A.F. Gourgues, J. Besson, T. Sturel, and A. Pinear: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039-53.CrossRef
14.
Zurück zum Zitat N.N. Rykalin: Calculation of Heat Processes in Welding, Translation at the European Commission: Office for Official Publications of the European Communities, Moscow, 1960, pp. 28–35. N.N. Rykalin: Calculation of Heat Processes in Welding, Translation at the European Commission: Office for Official Publications of the European Communities, Moscow, 1960, pp. 28–35.
15.
16.
Zurück zum Zitat M. Yang, Y.J. Chao, X.D. Li, D. Immel, and J.Z. Tan: Mater. Sci. Eng. A, 2008, vol. 497, pp. 462-70.CrossRef M. Yang, Y.J. Chao, X.D. Li, D. Immel, and J.Z. Tan: Mater. Sci. Eng. A, 2008, vol. 497, pp. 462-70.CrossRef
17.
Zurück zum Zitat A.F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26-40.CrossRef A.F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26-40.CrossRef
18.
Zurück zum Zitat X.L. Yang, Y.B. Xu, X.D. Tan, and D. Wu: Mater. Sci. Eng. A, 2015, vol. 641, pp. 96-106.CrossRef X.L. Yang, Y.B. Xu, X.D. Tan, and D. Wu: Mater. Sci. Eng. A, 2015, vol. 641, pp. 96-106.CrossRef
19.
20.
Zurück zum Zitat P.R. Sreenivasan, A. Moitra, S.K. Ray, S.L. Mannan, and R. Chandramohan: Int. J. Pressure Vessels Piping, 1996, vol. 69, pp. 149-59.CrossRef P.R. Sreenivasan, A. Moitra, S.K. Ray, S.L. Mannan, and R. Chandramohan: Int. J. Pressure Vessels Piping, 1996, vol. 69, pp. 149-59.CrossRef
21.
Zurück zum Zitat A.A. Griffith: Philos. Trans. R. Soc. London, 1921, vol. 221, pp. 163-98.CrossRef A.A. Griffith: Philos. Trans. R. Soc. London, 1921, vol. 221, pp. 163-98.CrossRef
22.
23.
Zurück zum Zitat W.W. B. Filho, A.L. Carvalho, and P. Bowen: Mater. Sci. Eng. A, 2007, vol. 452-453, pp. 401-10.CrossRef W.W. B. Filho, A.L. Carvalho, and P. Bowen: Mater. Sci. Eng. A, 2007, vol. 452-453, pp. 401-10.CrossRef
24.
Zurück zum Zitat K. Zhang, Q.L. Yong, X.J. Sun, Z.D. Li, P.L. Zhao, and S.D. Chen: Acta Metall. Sin. (in Chinese), 2014, vol. 50, pp. 913-20. K. Zhang, Q.L. Yong, X.J. Sun, Z.D. Li, P.L. Zhao, and S.D. Chen: Acta Metall. Sin. (in Chinese), 2014, vol. 50, pp. 913-20.
25.
Zurück zum Zitat A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 168-73.CrossRef A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 168-73.CrossRef
26.
Zurück zum Zitat J.D. Chen, W.L. Mo, P. Wang, and S.P. Lu: Acta Metall. Sin. (in Chinese), 2012, vol. 48, pp. 1186-93.CrossRef J.D. Chen, W.L. Mo, P. Wang, and S.P. Lu: Acta Metall. Sin. (in Chinese), 2012, vol. 48, pp. 1186-93.CrossRef
27.
Zurück zum Zitat Y. Shao, B.Y. Yan, Y.H. Liu, C.L. Mao, C. Wei, Y.C. Liu, Z.S. Yan, H.J. Li, and C.X. Liu: J. Manuf. Process., 2019, vol. 43, pp. 9-16.CrossRef Y. Shao, B.Y. Yan, Y.H. Liu, C.L. Mao, C. Wei, Y.C. Liu, Z.S. Yan, H.J. Li, and C.X. Liu: J. Manuf. Process., 2019, vol. 43, pp. 9-16.CrossRef
28.
Zurück zum Zitat W. Zhang, L.Z. Jiang, J.C. Hu, and H.M. Song: Mater. Charact., 2009, vol. 60, pp. 50-55.CrossRef W. Zhang, L.Z. Jiang, J.C. Hu, and H.M. Song: Mater. Charact., 2009, vol. 60, pp. 50-55.CrossRef
29.
Zurück zum Zitat K. Kocatepe, M. Cerah, and M. Erdogan: Mater. Des., 2007, vol. 28, pp. 172-81.CrossRef K. Kocatepe, M. Cerah, and M. Erdogan: Mater. Des., 2007, vol. 28, pp. 172-81.CrossRef
30.
Zurück zum Zitat Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Nucl. Eng. Des., 1999, vol. 194, pp. 161-77.CrossRef Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Nucl. Eng. Des., 1999, vol. 194, pp. 161-77.CrossRef
31.
Zurück zum Zitat C.K. Syn, B. Fultz, and J.W. Morris: Metall. Trans. A, 1978, vol. 9, pp. 1635-40.CrossRef C.K. Syn, B. Fultz, and J.W. Morris: Metall. Trans. A, 1978, vol. 9, pp. 1635-40.CrossRef
33.
Zurück zum Zitat M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2505-16.CrossRef M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2505-16.CrossRef
34.
Zurück zum Zitat J. Kang, C. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2012, vol. 553, pp. 96-104.CrossRef J. Kang, C. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2012, vol. 553, pp. 96-104.CrossRef
Metadaten
Titel
Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones
verfasst von
Junjun Cui
Wenting Zhu
Zhenye Chen
Liqing Chen
Publikationsdatum
30.09.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06017-3

Weitere Artikel der Ausgabe 12/2020

Metallurgical and Materials Transactions A 12/2020 Zur Ausgabe

Metallurgical and Materials Transactions 50th Anniversary Collection

Building on Gleiter: The Foundations and Future of Deformation Processing of Nanocrystalline Metals

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.