Skip to main content
Erschienen in: Metals and Materials International 9/2020

30.07.2019

Microstructural Characterization and Softening Mechanism of Ultra-Low Carbon Steel and the Control Strategy in Compact Strip Production Process

verfasst von: Bo Jiang, Xuewen Hu, Guoning He, Huan Peng, Haibo Wang, Yazheng Liu

Erschienen in: Metals and Materials International | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the microstructures and properties of hot rolled ultra-low carbon steel sheet produced by different compact strip production (CSP) processes were investigated. The softening mechanism was also discussed and the control strategy was proposed in order to obtain optimum properties. Result showed that the average ferrite grain sizes of austenite rolling sheet and multiphase rolling sheet were 31.0 μm and 74.6 μm, respectively. The sheet after austenite rolling had a slightly higher yield and tensile strength while had a 6.3% higher elongation than that of the sheet after multiphase rolling. The higher dislocation in the sheet after multiphase rolling increased the strength while decreased the elongation. The softening mechanism of the sheet after multiphase rolling was the coarsening of ferrite grain. The combined role of {001} and {111} orientation resulted in a slight increase of the r and \({\bar{\text{r}}}\) value in the sheet after multiphase rolling. It was a wise choice to conduct rolling at the Ac1 temperature in CSP process to increase the grain size and decrease the dislocation density. Then, the strength of the sheets could be further reduced and the elongation could also be improved.

Graphic Abstract

The microstructures and properties of hot rolled ultra-low carbon steel sheet produced by different compact strip production (CSP) processes were investigated. The average ferrite grain sizes of austenite rolling sheet and multiphase rolling sheet were 31.0 μm and 74.6 μm, respectively. The sheet after austenite rolling had a slightly higher yield and tensile strength while had a 6.3% higher elongation than that of the sheet after multiphase rolling. The higher dislocation in the sheet after multiphase rolling increased the strength while decreased the elongation. The softening mechanism of the sheet after multiphase rolling was the coarsening of ferrite grain. It was a wise choice to conduct rolling at the Ac1 temperature in CSP process to increase the grain size and decrease the dislocation density. Then, the strength of the sheets could be further reduced and the elongation could also be improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kaspar, Microstructural aspects and optimization of thin slab direct rolling of steels. Steel Res Int 74(5), 318–326 (2003)CrossRef R. Kaspar, Microstructural aspects and optimization of thin slab direct rolling of steels. Steel Res Int 74(5), 318–326 (2003)CrossRef
2.
Zurück zum Zitat C. Klinkenberg, C. Bilgen, T. Boecher et al., 20 years of experience in thin slab casting and rolling state of the art and future developments. Mater Sci Forum 638, 3610–3615 (2010)CrossRef C. Klinkenberg, C. Bilgen, T. Boecher et al., 20 years of experience in thin slab casting and rolling state of the art and future developments. Mater Sci Forum 638, 3610–3615 (2010)CrossRef
3.
Zurück zum Zitat B. Gardiola, M. Humbert, C. Esling et al., Determination and prediction of the inherited ferrite texture in a HSLA steel produced by compact strip production. Mater Sci Eng, A 303(1–2), 60–69 (2001)CrossRef B. Gardiola, M. Humbert, C. Esling et al., Determination and prediction of the inherited ferrite texture in a HSLA steel produced by compact strip production. Mater Sci Eng, A 303(1–2), 60–69 (2001)CrossRef
4.
Zurück zum Zitat X. Zhu, G. Zhu, W. Mao, Comparison of grain size in plain carbon hot-rolled sheets manufactured by CSP and conventional rolling processing. J Iron Steel Res Int 19(1), 17–22 (2012)CrossRef X. Zhu, G. Zhu, W. Mao, Comparison of grain size in plain carbon hot-rolled sheets manufactured by CSP and conventional rolling processing. J Iron Steel Res Int 19(1), 17–22 (2012)CrossRef
5.
Zurück zum Zitat M.R. Toroghinejad, F. Ashrafizadeh, A. Najafizadeh et al., Effect of rolling temperature on the deformation and recrystallization textures of warm-rolled steels. Metall Mater Trans A 34(5), 1163–1174 (2003)CrossRef M.R. Toroghinejad, F. Ashrafizadeh, A. Najafizadeh et al., Effect of rolling temperature on the deformation and recrystallization textures of warm-rolled steels. Metall Mater Trans A 34(5), 1163–1174 (2003)CrossRef
6.
Zurück zum Zitat M.R. Barnett, J.J. Jonas, Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels. ISIJ Int 37(7), 697–705 (1997)CrossRef M.R. Barnett, J.J. Jonas, Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels. ISIJ Int 37(7), 697–705 (1997)CrossRef
7.
Zurück zum Zitat M.R. Barnett, J.J. Jonas, Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ Int 37(7), 706–714 (1997)CrossRef M.R. Barnett, J.J. Jonas, Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ Int 37(7), 706–714 (1997)CrossRef
8.
Zurück zum Zitat S. Matsuoka, K. Sakata, S. Satoh et al., Effect of hot-rolling strain rate in the ferrite region on the recrystallization texture of extra-low C sheet steels. ISIJ Int 34(1), 77–84 (1994)CrossRef S. Matsuoka, K. Sakata, S. Satoh et al., Effect of hot-rolling strain rate in the ferrite region on the recrystallization texture of extra-low C sheet steels. ISIJ Int 34(1), 77–84 (1994)CrossRef
9.
Zurück zum Zitat W.C. Jeong, Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel. Mater Lett 62(1), 91–94 (2008)CrossRef W.C. Jeong, Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel. Mater Lett 62(1), 91–94 (2008)CrossRef
10.
Zurück zum Zitat D. Liu, A.O. Humphreys, M.R. Toroghinezhad et al., The deformation microstructure and recrystallization behavior of warm rolled steels. ISIJ Int 42(7), 751–759 (2002)CrossRef D. Liu, A.O. Humphreys, M.R. Toroghinezhad et al., The deformation microstructure and recrystallization behavior of warm rolled steels. ISIJ Int 42(7), 751–759 (2002)CrossRef
11.
Zurück zum Zitat GB/T 228–2010, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, 2011. Beijing, China. GB/T 228–2010, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, 2011. Beijing, China.
12.
Zurück zum Zitat C. Wang, M. Wang, J. Shi et al., Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Mater 58(6), 492–495 (2008)CrossRef C. Wang, M. Wang, J. Shi et al., Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Mater 58(6), 492–495 (2008)CrossRef
13.
Zurück zum Zitat S. Takebayashi, T. Kunieda, N. Yoshinaga et al., Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6), 875–882 (2010)CrossRef S. Takebayashi, T. Kunieda, N. Yoshinaga et al., Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6), 875–882 (2010)CrossRef
14.
Zurück zum Zitat J. Pešička, R. Kužel, A. Dronhofer et al., The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16), 4847–4862 (2003)CrossRef J. Pešička, R. Kužel, A. Dronhofer et al., The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16), 4847–4862 (2003)CrossRef
15.
Zurück zum Zitat M. Li, L. Wang, J.D. Almer, Dislocation evolution during tensile deformation in ferritic–martensitic steels revealed by high-energy X-rays. Acta Mater 76, 381–393 (2014)CrossRef M. Li, L. Wang, J.D. Almer, Dislocation evolution during tensile deformation in ferritic–martensitic steels revealed by high-energy X-rays. Acta Mater 76, 381–393 (2014)CrossRef
16.
Zurück zum Zitat B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy (AIST, Association for Iron & Steel Technology, Warrendale, 2011) B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy (AIST, Association for Iron & Steel Technology, Warrendale, 2011)
17.
Zurück zum Zitat B. Jiang, M. Wu, M. Zhang et al., Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: effect of heat treatment parameters. Mater Sci Eng, A 707, 306–314 (2017)CrossRef B. Jiang, M. Wu, M. Zhang et al., Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: effect of heat treatment parameters. Mater Sci Eng, A 707, 306–314 (2017)CrossRef
18.
Zurück zum Zitat Q. Yong, Second Phases in Structural Steels (Metallurgical Industry Press, Beijing, 2006). (in chinese) Q. Yong, Second Phases in Structural Steels (Metallurgical Industry Press, Beijing, 2006). (in chinese)
19.
Zurück zum Zitat B. Jiang, Z. Mei, L. Zhou et al., Microstructure evolution, fracture and hardening mechanisms of quenched and tempered steel for large sized bearing rings at elevated quenching temperatures. Met Mater Int 22(4), 572–578 (2016)CrossRef B. Jiang, Z. Mei, L. Zhou et al., Microstructure evolution, fracture and hardening mechanisms of quenched and tempered steel for large sized bearing rings at elevated quenching temperatures. Met Mater Int 22(4), 572–578 (2016)CrossRef
20.
Zurück zum Zitat T. Hao, Z.Q. Fan, S.X. Zhao et al., Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel. Mater Sci Eng, A 596, 244–249 (2014)CrossRef T. Hao, Z.Q. Fan, S.X. Zhao et al., Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel. Mater Sci Eng, A 596, 244–249 (2014)CrossRef
21.
Zurück zum Zitat L. Rancel, M. Gómez, S.F. Medina et al., Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel. Mater Sci Eng, A 530, 21–27 (2011)CrossRef L. Rancel, M. Gómez, S.F. Medina et al., Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel. Mater Sci Eng, A 530, 21–27 (2011)CrossRef
22.
Zurück zum Zitat P. Yan, Z. Liu, H. Bao et al., Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel. Mater Sci Eng, A 597, 148–156 (2014)CrossRef P. Yan, Z. Liu, H. Bao et al., Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel. Mater Sci Eng, A 597, 148–156 (2014)CrossRef
23.
Zurück zum Zitat Y. Kang, H. Yu, K. Wang et al., Study of microstructure and strengthening mechanism of low carbon steel produced by CSP line. Iron Steel 38(8), 20–25 (2003). (in chinese) Y. Kang, H. Yu, K. Wang et al., Study of microstructure and strengthening mechanism of low carbon steel produced by CSP line. Iron Steel 38(8), 20–25 (2003). (in chinese)
24.
Zurück zum Zitat M.R. Barnett, role of in-grain shear bands in the nucleation of <111>//ND recrystallization textures in warm rolled steel. ISIJ Int 38(1), 78–85 (1998)CrossRef M.R. Barnett, role of in-grain shear bands in the nucleation of <111>//ND recrystallization textures in warm rolled steel. ISIJ Int 38(1), 78–85 (1998)CrossRef
25.
Zurück zum Zitat C.L. Miao, C.J. Shang, H.S. Zurob et al., Recrystallization, precipitation behaviors, and refinement of austenite grains in high Mn, high Nb steel. Metall Mater Trans A 43(2), 665–676 (2012)CrossRef C.L. Miao, C.J. Shang, H.S. Zurob et al., Recrystallization, precipitation behaviors, and refinement of austenite grains in high Mn, high Nb steel. Metall Mater Trans A 43(2), 665–676 (2012)CrossRef
26.
Zurück zum Zitat A. Najafi-Zadeh, S. Yue, J.J. Jonas, Influence of hot strip rolling parameters on austenite recrystallization in interstitial free steels. ISIJ Int 32(2), 213–221 (1992)CrossRef A. Najafi-Zadeh, S. Yue, J.J. Jonas, Influence of hot strip rolling parameters on austenite recrystallization in interstitial free steels. ISIJ Int 32(2), 213–221 (1992)CrossRef
27.
Zurück zum Zitat S.V.S.N. Murty, S. Torizuka, K. Nagai et al., Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scripta Mater 53(6), 763–768 (2005)CrossRef S.V.S.N. Murty, S. Torizuka, K. Nagai et al., Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scripta Mater 53(6), 763–768 (2005)CrossRef
28.
Zurück zum Zitat S.C. Hong, S.H. Lim, K.J. Lee et al., Effect of undercooling of austenite on strain induced ferrite transformation behavior. ISIJ Int 43(3), 394–399 (2003)CrossRef S.C. Hong, S.H. Lim, K.J. Lee et al., Effect of undercooling of austenite on strain induced ferrite transformation behavior. ISIJ Int 43(3), 394–399 (2003)CrossRef
29.
Zurück zum Zitat C.J. Huang, D.J. Browne, S. McFadden, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater 54(1), 11–21 (2006)CrossRef C.J. Huang, D.J. Browne, S. McFadden, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater 54(1), 11–21 (2006)CrossRef
Metadaten
Titel
Microstructural Characterization and Softening Mechanism of Ultra-Low Carbon Steel and the Control Strategy in Compact Strip Production Process
verfasst von
Bo Jiang
Xuewen Hu
Guoning He
Huan Peng
Haibo Wang
Yazheng Liu
Publikationsdatum
30.07.2019
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 9/2020
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-019-00392-2

Weitere Artikel der Ausgabe 9/2020

Metals and Materials International 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.