Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 11/2018

07.08.2018

Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins

verfasst von: Akbar Bagri, George Weber, Jean-Charles Stinville, William Lenthe, Tresa Pollock, Christopher Woodward, Somnath Ghosh

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper has three major objectives related to the development of computational micromechanics models of Ni-based superalloys, containing a large number of annealing twins. The first is the development of a robust methodology for generating 3D statistically equivalent virtual polycrystalline microstructures (3D-SEVPM) of Ni-based superalloys. Starting from electron backscattered diffraction (EBSD) images of sections, the method develops distributions and correlation functions of various morphological and crystallographic parameters. To incorporate twins in the parent grain microstructure, the joint probability of the number of twins and parent grain size, and the conditional probability distributions of twin thickness and twin distance are determined. Subsequently, a method is devised for inserting twins following the distribution functions. The overall methodology is validated by successfully comparing various statistics of the virtual microstructures with 3D EBSD data. The second objective is to establish the microstructure-based statistically equivalent representative volume element or M-SERVE that corresponds to the minimum SERVE size at which the statistics of any morphological or crystallographic feature converge to that of the experimental data. The Kolmogorov–Smirnov (KS) test is conducted to assess the convergence of the M-SERVE size. The final objective is to estimate the property-based statistically equivalent RVE or P-SERVE, defined as the smallest SERVE, which should be analyzed to predict effective material properties. The crystal plasticity finite-element model is used to simulate SERVEs, from which the overall material response is computed. Convergence plots of material properties including the yield strength and hardening rate are used to assess the P-SERVE. A smaller P-SERVE compared to the M-SERVE indicates that the characteristic features of twins implemented in determining the M-SERVE are more stringent than those for determining material properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Furrer, H. Fecht: J. Miner. Met. Mater. Soc. 1999, vol. 51, pp. 14–17.CrossRef D. Furrer, H. Fecht: J. Miner. Met. Mater. Soc. 1999, vol. 51, pp. 14–17.CrossRef
2.
3.
Zurück zum Zitat H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, C. Y. Jo (2009) Mater. Sci. Eng. A 517(1), pp. 125–131.CrossRef H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, C. Y. Jo (2009) Mater. Sci. Eng. A 517(1), pp. 125–131.CrossRef
4.
Zurück zum Zitat F. Torster, G. Baumeister, J. Albrecht, G. Lutjering, D. Helm, M. A. Daeubler: Mater. Sci. Eng. A 1997, vol. 234-236, pp. 189–192.CrossRef F. Torster, G. Baumeister, J. Albrecht, G. Lutjering, D. Helm, M. A. Daeubler: Mater. Sci. Eng. A 1997, vol. 234-236, pp. 189–192.CrossRef
5.
6.
Zurück zum Zitat L. Kovarik, R. R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M. J. Mills: . Prog. Mater. Sci. 2009, vol. 54, pp. 839.CrossRef L. Kovarik, R. R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M. J. Mills: . Prog. Mater. Sci. 2009, vol. 54, pp. 839.CrossRef
7.
Zurück zum Zitat T. M. Pollock, A. S. Argon: . Acta Metall. Mater. 1992, vol. 40 (1), pp. 1–30.CrossRef T. M. Pollock, A. S. Argon: . Acta Metall. Mater. 1992, vol. 40 (1), pp. 1–30.CrossRef
8.
Zurück zum Zitat D. Nouailhas, G. Cailletaud: Scripta Mater. 1996, vol. 34 (4), pp. 565–571.CrossRef D. Nouailhas, G. Cailletaud: Scripta Mater. 1996, vol. 34 (4), pp. 565–571.CrossRef
9.
Zurück zum Zitat E. P. Busso, K. S. Cheong: . Le J. Phys. IV 2001, vol. 11 (PR5), pp. 161–170. E. P. Busso, K. S. Cheong: . Le J. Phys. IV 2001, vol. 11 (PR5), pp. 161–170.
10.
Zurück zum Zitat D. M. Dimiduk, M. D. Uchic, T. A. Parthasarathy: Acta Mater. 2005, vol. 53 (15), pp. 4065–4077.CrossRef D. M. Dimiduk, M. D. Uchic, T. A. Parthasarathy: Acta Mater. 2005, vol. 53 (15), pp. 4065–4077.CrossRef
11.
Zurück zum Zitat Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk, M. D. Uchic: . Mater. Sci. Eng. A 2005, vol. 397 (1), pp. 69–83.CrossRef Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk, M. D. Uchic: . Mater. Sci. Eng. A 2005, vol. 397 (1), pp. 69–83.CrossRef
12.
Zurück zum Zitat J. Segurado, R.A. Lebensohn, J. Lorca, C.N. Tomé (2012) Int. J. Plasticity 28(1), 124–140.CrossRef J. Segurado, R.A. Lebensohn, J. Lorca, C.N. Tomé (2012) Int. J. Plasticity 28(1), 124–140.CrossRef
13.
Zurück zum Zitat M. G. Moghaddam, A. Achuthan, B. A. Bednarcyk, S. M. Arnold, E. J. Pineda: Comput. Mater. Sci. 2015, vol. 96, pp. 44–55.CrossRef M. G. Moghaddam, A. Achuthan, B. A. Bednarcyk, S. M. Arnold, E. J. Pineda: Comput. Mater. Sci. 2015, vol. 96, pp. 44–55.CrossRef
14.
Zurück zum Zitat S. Keshavarz, S. Ghosh: Acta Mater. 2013, vol. 61 (17), pp. 6549 – 6561.CrossRef S. Keshavarz, S. Ghosh: Acta Mater. 2013, vol. 61 (17), pp. 6549 – 6561.CrossRef
15.
Zurück zum Zitat S. Keshavarz, S. Ghosh: Int. J. Solids Struct. 2015, vol. 55, pp. 17–31.CrossRef S. Keshavarz, S. Ghosh: Int. J. Solids Struct. 2015, vol. 55, pp. 17–31.CrossRef
16.
Zurück zum Zitat S. Ghosh, G. Weber, S. Keshavarz: Mech. Res. Commun. 2016, vol. 78, pp. 34–46.CrossRef S. Ghosh, G. Weber, S. Keshavarz: Mech. Res. Commun. 2016, vol. 78, pp. 34–46.CrossRef
17.
Zurück zum Zitat S. Keshavarz, S. Ghosh: Philos. Mag. 2015, vol. 95 (24), pp. 2639–2660.CrossRef S. Keshavarz, S. Ghosh: Philos. Mag. 2015, vol. 95 (24), pp. 2639–2660.CrossRef
18.
Zurück zum Zitat S. Keshavarz, S. Ghosh, A. Reid, S. Langer: Acta Mater. 2016, vol. 114 (1), pp. 106–15.CrossRef S. Keshavarz, S. Ghosh, A. Reid, S. Langer: Acta Mater. 2016, vol. 114 (1), pp. 106–15.CrossRef
19.
Zurück zum Zitat J. S. Miao, T. M. Pollock, J. W. Jones: Acta Mater. 2012, vol. 60, pp. 2840–2854.CrossRef J. S. Miao, T. M. Pollock, J. W. Jones: Acta Mater. 2012, vol. 60, pp. 2840–2854.CrossRef
20.
Zurück zum Zitat J. C. Stinville, W. C. Lenthe, J. Miao, T. M. Pollock: Acta Mater. 2016, vol. 103, pp. 461–473.CrossRef J. C. Stinville, W. C. Lenthe, J. Miao, T. M. Pollock: Acta Mater. 2016, vol. 103, pp. 461–473.CrossRef
21.
Zurück zum Zitat Z. Alam, D. Eastman, M. Jo, K. Hemker: JOM 2016, vol. 68 (11), pp. 2754–2760.CrossRef Z. Alam, D. Eastman, M. Jo, K. Hemker: JOM 2016, vol. 68 (11), pp. 2754–2760.CrossRef
22.
Zurück zum Zitat D. Eastman, Z. Alam, G. Weber, P. Shade, W. Uchic, M. Lenthe, T. Pollock, and K. Hemker: Proceedings of the 13th International Symposium on Superalloys, 2016, vol. 1, pp. 813–20. D. Eastman, Z. Alam, G. Weber, P. Shade, W. Uchic, M. Lenthe, T. Pollock, and K. Hemker: Proceedings of the 13th International Symposium on Superalloys, 2016, vol. 1, pp. 813–20.
23.
24.
Zurück zum Zitat S. Torquato: Random Herogeneous Materials. Springer, New York (2002).CrossRef S. Torquato: Random Herogeneous Materials. Springer, New York (2002).CrossRef
25.
26.
Zurück zum Zitat S. Swaminathan, S. Ghosh, N. J. Pagano: J. Comput. Mater. 2006, vol. 40 (7), pp. 583–604.CrossRef S. Swaminathan, S. Ghosh, N. J. Pagano: J. Comput. Mater. 2006, vol. 40 (7), pp. 583–604.CrossRef
27.
Zurück zum Zitat S. Swaminathan, S. Ghosh: J. Comput. Mater. 2006, vol. 40 (7), pp. 605–621.CrossRef S. Swaminathan, S. Ghosh: J. Comput. Mater. 2006, vol. 40 (7), pp. 605–621.CrossRef
28.
Zurück zum Zitat D. McDowell, S. Ghosh, S. Kalidindi: J. Min. Met. Mater. Soc. (JOM) 2011, vol. 63 (3), pp. 45–51.CrossRef D. McDowell, S. Ghosh, S. Kalidindi: J. Min. Met. Mater. Soc. (JOM) 2011, vol. 63 (3), pp. 45–51.CrossRef
29.
Zurück zum Zitat S. Ghosh, D. Kubair: J. Mech. Phys. Solids 2016, vol. 95, pp. 1–24.CrossRef S. Ghosh, D. Kubair: J. Mech. Phys. Solids 2016, vol. 95, pp. 1–24.CrossRef
30.
Zurück zum Zitat S. M. Qidwai, D. Turner, S. Niezgoda, A. Lewis, A. Geltmacher, D. J. Rowenhorst, S. R. Kalidindi: Acta Mater. 2012, vol. 60, pp. 52845299.CrossRef S. M. Qidwai, D. Turner, S. Niezgoda, A. Lewis, A. Geltmacher, D. J. Rowenhorst, S. R. Kalidindi: Acta Mater. 2012, vol. 60, pp. 52845299.CrossRef
31.
Zurück zum Zitat M. P. Echlin, A. Mottura, M. Wang, P. J. Mignone, D. P. Riley, G. V. Franks, T. M. Pollock: Acta Mater. 2013, vol. 64, pp. 307315.CrossRef M. P. Echlin, A. Mottura, M. Wang, P. J. Mignone, D. P. Riley, G. V. Franks, T. M. Pollock: Acta Mater. 2013, vol. 64, pp. 307315.CrossRef
32.
Zurück zum Zitat M. Echlin, W. Lenthe, T. Pollock: Int. Mater. Manuf. Innov. 2014, vol. 3 (1), pp. 21–34.CrossRef M. Echlin, W. Lenthe, T. Pollock: Int. Mater. Manuf. Innov. 2014, vol. 3 (1), pp. 21–34.CrossRef
33.
Zurück zum Zitat A. Kumar, L. Nguyen, M. DeGraef, and V. Sundararaghavan (2016) Mod. Simul. Mater. Sci. Eng. 24(3), 1–13.CrossRef A. Kumar, L. Nguyen, M. DeGraef, and V. Sundararaghavan (2016) Mod. Simul. Mater. Sci. Eng. 24(3), 1–13.CrossRef
34.
Zurück zum Zitat A. D. Rollett, S. B. Lee, R. Campman, G. S. Rohrer: Annu. Rev. Mater. Res. 2007, vol. 37, pp. 627 – 658.CrossRef A. D. Rollett, S. B. Lee, R. Campman, G. S. Rohrer: Annu. Rev. Mater. Res. 2007, vol. 37, pp. 627 – 658.CrossRef
35.
Zurück zum Zitat D. M. Saylor, J. Fridy, B. S. El-Dasher, K.-Y. Jung, A. D. Rollett: Metall. Mater. Trans. A 2004, vol. 35A, pp. 1969–1979.CrossRef D. M. Saylor, J. Fridy, B. S. El-Dasher, K.-Y. Jung, A. D. Rollett: Metall. Mater. Trans. A 2004, vol. 35A, pp. 1969–1979.CrossRef
36.
Zurück zum Zitat Y. Jiao, E. Padilla, N. Chawla: Acta Mater. 2013, vol. 61 (9), pp. 3370–3377.CrossRef Y. Jiao, E. Padilla, N. Chawla: Acta Mater. 2013, vol. 61 (9), pp. 3370–3377.CrossRef
37.
Zurück zum Zitat A. Hasanabadi, M. Baniassadi, K. Abrinia, M. Safdari, H. Garmestani: Comput. Mater. Sci. 2016, vol. 111, pp. 107–15.CrossRef A. Hasanabadi, M. Baniassadi, K. Abrinia, M. Safdari, H. Garmestani: Comput. Mater. Sci. 2016, vol. 111, pp. 107–15.CrossRef
38.
Zurück zum Zitat S. Niezgoda, D. Turner, D. Fullwood, S. Kalidindi: Acta Mater. 2010, vol. 58, pp. 44324445.CrossRef S. Niezgoda, D. Turner, D. Fullwood, S. Kalidindi: Acta Mater. 2010, vol. 58, pp. 44324445.CrossRef
39.
Zurück zum Zitat V. Sundararaghavan, N. Zabaras: Comput. Mater. Sci. 2005, vol. 32 (2), pp. 223–239.CrossRef V. Sundararaghavan, N. Zabaras: Comput. Mater. Sci. 2005, vol. 32 (2), pp. 223–239.CrossRef
40.
Zurück zum Zitat M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1257–1273.CrossRef M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1257–1273.CrossRef
41.
Zurück zum Zitat M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1274–1287.CrossRef M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1274–1287.CrossRef
42.
Zurück zum Zitat M. A. Groeber, M. A. Jackson (2014) Integr. Mater. Manuf. Innov. 3, 1–17.CrossRef M. A. Groeber, M. A. Jackson (2014) Integr. Mater. Manuf. Innov. 3, 1–17.CrossRef
43.
Zurück zum Zitat D. M. Saylor, A. Morawiec, G. S. Rohrer: Acta Mater. 2003, vol. 51, pp. 3663–3674.CrossRef D. M. Saylor, A. Morawiec, G. S. Rohrer: Acta Mater. 2003, vol. 51, pp. 3663–3674.CrossRef
44.
Zurück zum Zitat W. M. Williams, C. S. Smith: Trans. Am. Inst. Min. Met. Eng. 1952, vol. 194, pp. 755–765. W. M. Williams, C. S. Smith: Trans. Am. Inst. Min. Met. Eng. 1952, vol. 194, pp. 755–765.
45.
Zurück zum Zitat A. Bagri, J. P. Hanson, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Demkowicz: Metall. Mater. Trans. A 2017, vol. 48A, pp. 354–361.CrossRef A. Bagri, J. P. Hanson, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Demkowicz: Metall. Mater. Trans. A 2017, vol. 48A, pp. 354–361.CrossRef
46.
Zurück zum Zitat B. W. Krakauer, D. N. Seidman: J. Chem. Phys. 2000, vol. 8, pp. 27–40. B. W. Krakauer, D. N. Seidman: J. Chem. Phys. 2000, vol. 8, pp. 27–40.
47.
Zurück zum Zitat J. Duyster, B. Stockhert: Contrib. Mineral Petrol. 2001, vol. 140, pp. 567–576.CrossRef J. Duyster, B. Stockhert: Contrib. Mineral Petrol. 2001, vol. 140, pp. 567–576.CrossRef
48.
Zurück zum Zitat W. Lenthe: Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue, Ph.D. thesis, University of California - Santa Barbara, 2017. W. Lenthe: Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue, Ph.D. thesis, University of California - Santa Barbara, 2017.
49.
Zurück zum Zitat D. Zhang, C. D. Eggleton, D. D. Arola: Exp. Mech. 2002, vol. 42 (4), pp. 409–416.CrossRef D. Zhang, C. D. Eggleton, D. D. Arola: Exp. Mech. 2002, vol. 42 (4), pp. 409–416.CrossRef
50.
Zurück zum Zitat G. Casella, C.P. Robert, and M.T. Wells: Generalized Accept–Reject Sampling Schemes, Lecture Notes: Monograph Series, vol. 45, Institute of Mathematical Statistics, Beachwood, 2004, pp. 342–47. G. Casella, C.P. Robert, and M.T. Wells: Generalized Accept–Reject Sampling Schemes, Lecture Notes: Monograph Series, vol. 45, Institute of Mathematical Statistics, Beachwood, 2004, pp. 342–47.
51.
Zurück zum Zitat H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods. Butterworth-Heinemann, London, 1982. H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods. Butterworth-Heinemann, London, 1982.
52.
53.
Zurück zum Zitat D.M. Saylor, S. El Dasher, A.D. Rollett, G.S. Rohrer: Acta Mater. 2004, vol. 52, pp. 3649–3655.CrossRef D.M. Saylor, S. El Dasher, A.D. Rollett, G.S. Rohrer: Acta Mater. 2004, vol. 52, pp. 3649–3655.CrossRef
54.
Zurück zum Zitat J. Li, S. J. Dillon, G. S. Rohrer: Acta Mater. 2009, vol. 57, pp. 4304–4311.CrossRef J. Li, S. J. Dillon, G. S. Rohrer: Acta Mater. 2009, vol. 57, pp. 4304–4311.CrossRef
55.
Zurück zum Zitat W.W. Daniel: Kolmogorov–Smirnov One-Sample Test. PWS-Kent, Boston, 1990. W.W. Daniel: Kolmogorov–Smirnov One-Sample Test. PWS-Kent, Boston, 1990.
56.
Zurück zum Zitat C. Allan: Plasticity of nickel base single crystal superalloys, Ph.D. thesis, Massachusetts Institute of Technology, 1995. C. Allan: Plasticity of nickel base single crystal superalloys, Ph.D. thesis, Massachusetts Institute of Technology, 1995.
57.
Zurück zum Zitat J. Cheng, A. Shahba, S. Ghosh: Comput. Mech. 2016, vol. 57, pp. 733 – 753.CrossRef J. Cheng, A. Shahba, S. Ghosh: Comput. Mech. 2016, vol. 57, pp. 733 – 753.CrossRef
58.
Zurück zum Zitat Simulation Modeling Suite: Simmetrix Inc., 2015. Simulation Modeling Suite: Simmetrix Inc., 2015.
59.
Zurück zum Zitat J. C. Stinville, W. C. Lenthe, M. P. Echlin, P. G. Callahan, D. Texier, T. M. Pollock: Int. J. Fract. 2017, vol. 208, pp. 221–240.CrossRef J. C. Stinville, W. C. Lenthe, M. P. Echlin, P. G. Callahan, D. Texier, T. M. Pollock: Int. J. Fract. 2017, vol. 208, pp. 221–240.CrossRef
Metadaten
Titel
Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins
verfasst von
Akbar Bagri
George Weber
Jean-Charles Stinville
William Lenthe
Tresa Pollock
Christopher Woodward
Somnath Ghosh
Publikationsdatum
07.08.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 11/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4858-y

Weitere Artikel der Ausgabe 11/2018

Metallurgical and Materials Transactions A 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.