Skip to main content
Erschienen in: Journal of Materials Science 10/2021

03.01.2021 | Metals & corrosion

Microstructure and texture evolution of cold-rolled low-Ni Cr–Mn–N austenitic stainless steel during bending

verfasst von: Hamidreza Kamali, Haibo Xie, Fanghui Jia, Hongyun Bi, E. Chang, Haigang Xu, Haifeng Yu, Zhengyi Jiang

Erschienen in: Journal of Materials Science | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructure and texture evolution of a low-Ni Cr–Mn–N austenitic stainless steel were analysed during three-point bending process. The electron back-scattering diffraction (EBSD) was used to characterise the microstructural evolution with respect to two regions encompassing (I) near the inner corner and (II) near the outer corner. The fraction of deformation-induced martensite of either types (ε- and α′-martensite) was analysed in both regions. The region (I) possessed a considerably higher fraction of ε-martensite than that in the region (II). In the region (II), the fraction of austenite 60°/〈111〉 twins was increased. Moreover, in the region (I), the \(\left\{10\bar{1}2\right\}\langle \bar{1}011\rangle\) extension twinning was depicted in ε-martensite. The mean kernel average misorientation of ε-martensite experienced a trivial change with increasing bending angle after reaching to a saturation point. Upon bending, texture measurements of austenite returned the αγ-fibre orientations with the dominant Brass component. However, a decrease in the Cube and S texture components was identified. The ε-martensite texture revealed strong intensities along the \({\left\{hkil\right\}}_{\upvarepsilon }\)-fibre. Besides, the α′-martensite developed \(\left(001\right){\left[0\bar{1}0\right]}_{{\alpha^{\prime}}}\) and \(\left(001\right){\left[001\right]}_{\mathrm{\alpha^{\prime}}}\) orientations with a trace of \(\left(113\right){\left[4\bar{7}1\right]}_{{\alpha^{\prime}}}\) orientation.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→ HCP transformation. Metall Trans A 7(12):1897–1904 Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→ HCP transformation. Metall Trans A 7(12):1897–1904
2.
Zurück zum Zitat Fei D, Hodgson P (2006) Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels. Nucl Eng Des 236(18):1847–1851 Fei D, Hodgson P (2006) Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels. Nucl Eng Des 236(18):1847–1851
3.
Zurück zum Zitat Shan T, Li S, Zhang W, Xu Z (2008) Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming. Mater Des 29(9):1810–1816 Shan T, Li S, Zhang W, Xu Z (2008) Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming. Mater Des 29(9):1810–1816
4.
Zurück zum Zitat Kim S, Lee Y (2011) Effect of retained austenite phase on springback of cold-rolled TRIP steel sheets. Mater Sci Eng A 530:218–224 Kim S, Lee Y (2011) Effect of retained austenite phase on springback of cold-rolled TRIP steel sheets. Mater Sci Eng A 530:218–224
5.
Zurück zum Zitat Van Beeck J, Kouznetsova V, Van Maris M (2011) The mechanical behaviour of metastable austenitic steels in pure bending. Mater Sci Eng A 528(24):7207–7213 Van Beeck J, Kouznetsova V, Van Maris M (2011) The mechanical behaviour of metastable austenitic steels in pure bending. Mater Sci Eng A 528(24):7207–7213
6.
Zurück zum Zitat Seemann P, Kurz S, Gümpel P (2013) Martensite formation in a new manganese alloyed metastable austenitic steel (AISI 200-series). J Alloy Compd 577:S649–S653 Seemann P, Kurz S, Gümpel P (2013) Martensite formation in a new manganese alloyed metastable austenitic steel (AISI 200-series). J Alloy Compd 577:S649–S653
7.
Zurück zum Zitat Ishimaru E, Hamasaki H, Yoshida F (2015) Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. J Mater Process Technol 223:34–38 Ishimaru E, Hamasaki H, Yoshida F (2015) Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. J Mater Process Technol 223:34–38
8.
Zurück zum Zitat Ahmadi M, Sadeghi BM, Arabi H (2017) Experimental and numerical investigation of V-bent anisotropic 304L SS sheet with spring-forward considering deformation-induced martensitic transformation. Mater Des 123:211–222 Ahmadi M, Sadeghi BM, Arabi H (2017) Experimental and numerical investigation of V-bent anisotropic 304L SS sheet with spring-forward considering deformation-induced martensitic transformation. Mater Des 123:211–222
10.
Zurück zum Zitat He J, Guo X, Lian J, Münstermann S, Bleck W (2019) Delayed cracking behavior of a meta-stable austenitic stainless steel under bending condition. Mater Sci Eng A 768:138470 He J, Guo X, Lian J, Münstermann S, Bleck W (2019) Delayed cracking behavior of a meta-stable austenitic stainless steel under bending condition. Mater Sci Eng A 768:138470
11.
Zurück zum Zitat Bracke L, Verbeken K, Kestens L, Penning J (2009) Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater 57(5):1512–1524 Bracke L, Verbeken K, Kestens L, Penning J (2009) Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater 57(5):1512–1524
12.
Zurück zum Zitat Lü Y, Molodov DA, Gottstein G (2011) Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe–Mn–C alloy. Acta Mater 59(8):3229–3243 Lü Y, Molodov DA, Gottstein G (2011) Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe–Mn–C alloy. Acta Mater 59(8):3229–3243
13.
Zurück zum Zitat Gazder AA, Saleh AA, Nancarrow MJ, Mitchell DR, Pereloma EV (2015) A transmission Kikuchi diffraction study of a cold‐rolled and annealed Fe–17Mn–2Si–3Al–1Ni–0.06 C wt% steel. Steel Res Int 86(10):1204–1214. Gazder AA, Saleh AA, Nancarrow MJ, Mitchell DR, Pereloma EV (2015) A transmission Kikuchi diffraction study of a cold‐rolled and annealed Fe–17Mn–2Si–3Al–1Ni–0.06 C wt% steel. Steel Res Int 86(10):1204–1214.
14.
Zurück zum Zitat Saleh AA, Pereloma EV, Gazder AA (2011) Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06 C TWIP steel. Mater Sci Eng A 528(13–14):4537–4549 Saleh AA, Pereloma EV, Gazder AA (2011) Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06 C TWIP steel. Mater Sci Eng A 528(13–14):4537–4549
16.
Zurück zum Zitat Chen J, Zhang W-N, Liu Z-Y, Wang G-D (2017) Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy. Mater Sci Eng A 698:198–205 Chen J, Zhang W-N, Liu Z-Y, Wang G-D (2017) Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy. Mater Sci Eng A 698:198–205
17.
Zurück zum Zitat Mandal S, Sivaprasad P, Sarma VS (2010) Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation. Mater Manuf Processes 25(1–3):54–59 Mandal S, Sivaprasad P, Sarma VS (2010) Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation. Mater Manuf Processes 25(1–3):54–59
18.
Zurück zum Zitat Alvi MH, Cheong SW, Weiland H, Rollett AD (2004) Recrystallization and texture development in hot rolled 1050 aluminum. In: Materials Science Forum, vol 467: Trans Tech Publ, pp 357–362. Alvi MH, Cheong SW, Weiland H, Rollett AD (2004) Recrystallization and texture development in hot rolled 1050 aluminum. In: Materials Science Forum, vol 467: Trans Tech Publ, pp 357–362.
19.
Zurück zum Zitat Badji R, Bacroix B, Bouabdallah M (2011) Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds. Mater Charact 62(9):833–843 Badji R, Bacroix B, Bouabdallah M (2011) Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds. Mater Charact 62(9):833–843
20.
Zurück zum Zitat Mishra SK, Tiwari SM, Kumar AM, Hector LG (2012) Effect of strain and strain path on texture and twin development in austenitic steel with twinning-induced plasticity. Metal Mater Trans A 43(5):1598–1609 Mishra SK, Tiwari SM, Kumar AM, Hector LG (2012) Effect of strain and strain path on texture and twin development in austenitic steel with twinning-induced plasticity. Metal Mater Trans A 43(5):1598–1609
21.
Zurück zum Zitat Talonen J, Hänninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55(18):6108–6118 Talonen J, Hänninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55(18):6108–6118
22.
Zurück zum Zitat Eskandari M, Szpunar J (2020) Microstructure and texture of high manganese steel subjected to dynamic impact loading. Mater Sci Technol, pp 1–13. Eskandari M, Szpunar J (2020) Microstructure and texture of high manganese steel subjected to dynamic impact loading. Mater Sci Technol, pp 1–13.
23.
Zurück zum Zitat Zhao J, Jiang Z (2018) Thermomechanical processing of advanced high strength steels. Prog Mater Sci 94:174–242 Zhao J, Jiang Z (2018) Thermomechanical processing of advanced high strength steels. Prog Mater Sci 94:174–242
24.
Zurück zum Zitat Olson G, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6(4):791 Olson G, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6(4):791
25.
Zurück zum Zitat Das A, Chakraborti P, Tarafder S, Bhadeshia H (2011) Analysis of deformation induced martensitic transformation in stainless steels. Mater Sci Technol 27(1):366–370 Das A, Chakraborti P, Tarafder S, Bhadeshia H (2011) Analysis of deformation induced martensitic transformation in stainless steels. Mater Sci Technol 27(1):366–370
26.
Zurück zum Zitat Eskandari M, Zarei-Hanzaki A, Yadegari M, Soltani N, Asghari A (2014) In situ identification of elastic–plastic strain distribution in a microalloyed transformation induced plasticity steel using digital image correlation. Opt Lasers Eng 54:79–87 Eskandari M, Zarei-Hanzaki A, Yadegari M, Soltani N, Asghari A (2014) In situ identification of elastic–plastic strain distribution in a microalloyed transformation induced plasticity steel using digital image correlation. Opt Lasers Eng 54:79–87
27.
Zurück zum Zitat Misra R, Nayak S, Venkatasurya P, Ramuni V, Somani M, Karjalainen L (2010) Nanograined/ultrafine-grained structure and tensile deformation behavior of shear phase reversion-induced 301 austenitic stainless steel. Metal Mater Trans A 41(8):2162–2174 Misra R, Nayak S, Venkatasurya P, Ramuni V, Somani M, Karjalainen L (2010) Nanograined/ultrafine-grained structure and tensile deformation behavior of shear phase reversion-induced 301 austenitic stainless steel. Metal Mater Trans A 41(8):2162–2174
28.
Zurück zum Zitat Talonen J, Hänninen H (2004) Damping properties of austenitic stainless steels containing strain-induced martensite. Metal Mater Trans A 35(8):2401–2406 Talonen J, Hänninen H (2004) Damping properties of austenitic stainless steels containing strain-induced martensite. Metal Mater Trans A 35(8):2401–2406
29.
Zurück zum Zitat Pierce DT, Jiménez JA, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253 Pierce DT, Jiménez JA, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253
30.
Zurück zum Zitat Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE (2015) The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater 100:178–190 Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE (2015) The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater 100:178–190
31.
Zurück zum Zitat Kikuchi T, Kajiwara S, Tomota Y (1995) Microscopic studies on stress-induced martensite transformation and its reversion in an Fe–Mn–Si–Cr–Ni shape memory alloy. Mater Trans JIM 36(6):719–728 Kikuchi T, Kajiwara S, Tomota Y (1995) Microscopic studies on stress-induced martensite transformation and its reversion in an Fe–Mn–Si–Cr–Ni shape memory alloy. Mater Trans JIM 36(6):719–728
32.
Zurück zum Zitat Fujita H, Ueda S (1972) Stacking faults and fcc (γ)→ hcp (ϵ) transformation in 188-type stainless steel. Acta Metall 20(5):759–767 Fujita H, Ueda S (1972) Stacking faults and fcc (γ)→ hcp (ϵ) transformation in 188-type stainless steel. Acta Metall 20(5):759–767
33.
Zurück zum Zitat Nishiyama Z (2012) Martensitic transformation. Elsevier, Amsterdam. Nishiyama Z (2012) Martensitic transformation. Elsevier, Amsterdam.
34.
Zurück zum Zitat Kurdjumow G, Sachs G (1930) Über den mechanismus der stahlhärtung. Zeitschrift für Physik 64(5–6):325–343 Kurdjumow G, Sachs G (1930) Über den mechanismus der stahlhärtung. Zeitschrift für Physik 64(5–6):325–343
35.
Zurück zum Zitat Lee T-H, Shin E, Oh C-S, Ha H-Y, Kim S-J (2010) Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater 58(8):3173–3186 Lee T-H, Shin E, Oh C-S, Ha H-Y, Kim S-J (2010) Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater 58(8):3173–3186
36.
Zurück zum Zitat Nakada N, Tsuchiyama T, Takaki S, Hashizume S (2007) Variant selection of reversed austenite in lath martensite. ISIJ Int 47(10):1527–1532 Nakada N, Tsuchiyama T, Takaki S, Hashizume S (2007) Variant selection of reversed austenite in lath martensite. ISIJ Int 47(10):1527–1532
37.
Zurück zum Zitat Pramanik S, Gazder AA, Saleh AA, Pereloma EV (2018) Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel. Mater Sci Eng A 731:506–519 Pramanik S, Gazder AA, Saleh AA, Pereloma EV (2018) Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel. Mater Sci Eng A 731:506–519
38.
Zurück zum Zitat Pramanik S, Gazder AA, Saleh AA, Santos DB, Pereloma EV (2018) Effect of uniaxial tension on the microstructure and texture of high Mn steel. Adv Eng Mater 20(11):1800258 Pramanik S, Gazder AA, Saleh AA, Santos DB, Pereloma EV (2018) Effect of uniaxial tension on the microstructure and texture of high Mn steel. Adv Eng Mater 20(11):1800258
39.
Zurück zum Zitat Duggan B, Hatherly M, Hutchinson W, Wakefield P (1978) Deformation structures and textures in cold-rolled 70:30 brass. Metal Sci 12(8):343–351 Duggan B, Hatherly M, Hutchinson W, Wakefield P (1978) Deformation structures and textures in cold-rolled 70:30 brass. Metal Sci 12(8):343–351
40.
Zurück zum Zitat Beese AM, Mohr D (2011) Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation. Acta Mater 59(7):2589–2600 Beese AM, Mohr D (2011) Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation. Acta Mater 59(7):2589–2600
41.
Zurück zum Zitat Lebedev A, Kosarchuk V (2000) Influence of phase transformations on the mechanical properties of austenitic stainless steels. Int J Plast 16(7–8):749–767 Lebedev A, Kosarchuk V (2000) Influence of phase transformations on the mechanical properties of austenitic stainless steels. Int J Plast 16(7–8):749–767
42.
Zurück zum Zitat Sidhoum Z, Ferhoum R, Almansba M, Bensaada R, Habak M, Aberkane M (2018) Experimental and numerical study of the mechanical behavior and kinetics of the martensitic transformation in 304L TRIP steel: applied to folding. Int J Adv Manufact Technol 97(5–8):2757–2765 Sidhoum Z, Ferhoum R, Almansba M, Bensaada R, Habak M, Aberkane M (2018) Experimental and numerical study of the mechanical behavior and kinetics of the martensitic transformation in 304L TRIP steel: applied to folding. Int J Adv Manufact Technol 97(5–8):2757–2765
43.
Zurück zum Zitat Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Oxford. Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Oxford.
44.
Zurück zum Zitat Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Mater 58(11):994–997 Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Mater 58(11):994–997
45.
Zurück zum Zitat Chowdhury SG, Das S, De P (2005) Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater 53(14):3951–3959 Chowdhury SG, Das S, De P (2005) Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater 53(14):3951–3959
46.
Zurück zum Zitat Kumar BR, Singh A, Das S, Bhattacharya D (2004) Cold rolling texture in AISI 304 stainless steel. Mater Sci Eng A 364(1–2):132–139 Kumar BR, Singh A, Das S, Bhattacharya D (2004) Cold rolling texture in AISI 304 stainless steel. Mater Sci Eng A 364(1–2):132–139
47.
Zurück zum Zitat Lü Y, Hutchinson B, Molodov DA, Gottstein G (2010) Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe–Mn–C alloy. Acta Mater 58(8):3079–3090 Lü Y, Hutchinson B, Molodov DA, Gottstein G (2010) Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe–Mn–C alloy. Acta Mater 58(8):3079–3090
48.
Zurück zum Zitat Kowalska J, Ratuszek W, Witkowska M, Zielińska-Lipiec A, Tokarski T (2015) Microstructure and texture characteristics of the metastable Fe–21Mn–3Si–3Al alloy after cold deformation. J Alloy Compd 643:S39–S45 Kowalska J, Ratuszek W, Witkowska M, Zielińska-Lipiec A, Tokarski T (2015) Microstructure and texture characteristics of the metastable Fe–21Mn–3Si–3Al alloy after cold deformation. J Alloy Compd 643:S39–S45
49.
Zurück zum Zitat Pramanik S, Saleh AA, Pereloma EV, Gazder AA (2018) Effect of isochronal annealing on the microstructure, texture and mechanical properties of a cold-rolled high manganese steel. Mater Charact 144:66–76 Pramanik S, Saleh AA, Pereloma EV, Gazder AA (2018) Effect of isochronal annealing on the microstructure, texture and mechanical properties of a cold-rolled high manganese steel. Mater Charact 144:66–76
50.
Zurück zum Zitat Kundu S, Bhadeshia H (2007) Crystallographic texture and intervening transformations. Scripta Mater 57(9):869–872 Kundu S, Bhadeshia H (2007) Crystallographic texture and intervening transformations. Scripta Mater 57(9):869–872
Metadaten
Titel
Microstructure and texture evolution of cold-rolled low-Ni Cr–Mn–N austenitic stainless steel during bending
verfasst von
Hamidreza Kamali
Haibo Xie
Fanghui Jia
Hongyun Bi
E. Chang
Haigang Xu
Haifeng Yu
Zhengyi Jiang
Publikationsdatum
03.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05611-5

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Science 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.