Skip to main content
Erschienen in: Cellulose 4/2013

01.08.2013 | Original Paper

Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites

verfasst von: Haihua Wang, Naravit Leaukosol, Zhibing He, Guiqiang Fei, Chuanling Si, Yonghao Ni

Erschienen in: Cellulose | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly intrinsic conductive polypyrrole/cellulose fiber composites (CF) were successfully prepared through in situ chemical oxidation polymerization simply by increasing fiber concentration at the same dosage of pyrrole, oxidant and dopant (based on the weight of dry fiber). FeCl3 and anthraquinone-2-sulfonic acid sodium salt (AQSNa) were utilized as oxidant and dopant. As fiber concentration increased from 1 % (CF1) to 20 % (CF20), N and S content increased from 0.24 and 0.25 % to 1.24 and 0.89 %, and great increase in the retention of PPy and AQSNa was confirmed by elemental analysis. In addition, on the surface of conductive fiber, PPy of compact fibroid structure was detected instead of interconnected globular structure at higher fiber concentration. Furthermore, scanning transmission electron microscope and X-ray photoelectron spectroscopy (XPS)-depth profile analysis demonstrated denser and more uniformly distributed PPy inside fiber wall for CF20, while PPy tended to deposit on the surface of fiber for CF1. Fourier transform infrared spectroscopy, together with XPS certified that the PPy with longer conjugation length and higher doping level across the conductive fiber was obtained at higher fiber concentration. The doping level for CF10 decreased from 21.55 to 16.39 % with increasing fiber wall thickness, while that of CF20 decreased slightly from 30.73 to 24.10 %. The resulting CF20 showed lowest surface resistivity of 0.433 KΩ/square, as well as improved electro-conductivity stability. The incorporation of more PPy in CF improved the thermal stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LH, Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60(5):743–750. doi:10.1002/pi.3004 CrossRef Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LH, Mosiewicki MA, Marcovich NE, Aranguren MI (2011) Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60(5):743–750. doi:10.​1002/​pi.​3004 CrossRef
Zurück zum Zitat Beneventi D, Alila S, Boufi S, Chaussy D, Nortier P (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13(6):725–734. doi:10.1007/s10570-006-9077-9 CrossRef Beneventi D, Alila S, Boufi S, Chaussy D, Nortier P (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13(6):725–734. doi:10.​1007/​s10570-006-9077-9 CrossRef
Zurück zum Zitat Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA (2007) Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity. Surf Interface Anal 39(1):26–32. doi:10.1002/sia.2457 CrossRef Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA (2007) Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity. Surf Interface Anal 39(1):26–32. doi:10.​1002/​sia.​2457 CrossRef
Zurück zum Zitat Chen Y, Qian X, An X (2011) Preparation and characterization of conductive paper via in situ polymerization of 3,4-ethylenedioxythiophene. BioResources 6(3):3410–3423 Chen Y, Qian X, An X (2011) Preparation and characterization of conductive paper via in situ polymerization of 3,4-ethylenedioxythiophene. BioResources 6(3):3410–3423
Zurück zum Zitat Ding C, Qian X, Shen J, An X (2010a) Preparation and characterization of conductive paper via in situ polymerization of pyrrole. BioResources 5(1):303–315 Ding C, Qian X, Shen J, An X (2010a) Preparation and characterization of conductive paper via in situ polymerization of pyrrole. BioResources 5(1):303–315
Zurück zum Zitat Ding C, Qian X, Yu G, An X (2010b) Dopant effect and characterization of polypyrrolecellulose composites prepared by in situ polymerization process. Cellulose 17(6):1067–1077. doi:10.1007/s10570-010-9442-6 CrossRef Ding C, Qian X, Yu G, An X (2010b) Dopant effect and characterization of polypyrrolecellulose composites prepared by in situ polymerization process. Cellulose 17(6):1067–1077. doi:10.​1007/​s10570-010-9442-6 CrossRef
Zurück zum Zitat Ferrero F, Napoli L, Tonin C, Varesano A (2006) Pyrrole chemical polymerization on textiles: kinetics and operating conditions. J Appl Polym Sci 102(5):4121–4126. doi:10.1002/app.24149 CrossRef Ferrero F, Napoli L, Tonin C, Varesano A (2006) Pyrrole chemical polymerization on textiles: kinetics and operating conditions. J Appl Polym Sci 102(5):4121–4126. doi:10.​1002/​app.​24149 CrossRef
Zurück zum Zitat Flores O, Romo-Uribe A, Romero-Guzmán ME, González AE, Cruz-Silva R, Campillo B (2009) Mechanical properties and fracture behavior of polypropylene reinforced with polyaniline-grafted short glass fibers. J Appl Polym Sci 112(2):934–941. doi:10.1002/app.29453 CrossRef Flores O, Romo-Uribe A, Romero-Guzmán ME, González AE, Cruz-Silva R, Campillo B (2009) Mechanical properties and fracture behavior of polypropylene reinforced with polyaniline-grafted short glass fibers. J Appl Polym Sci 112(2):934–941. doi:10.​1002/​app.​29453 CrossRef
Zurück zum Zitat Huang B, Kang GJ, Ni Y (2006) Preparation of conductive paper by in situ polymerization of pyrrole in a pulp fibre system. Pulp & Paper Canada 107(2):38–42 Huang B, Kang GJ, Ni Y (2006) Preparation of conductive paper by in situ polymerization of pyrrole in a pulp fibre system. Pulp & Paper Canada 107(2):38–42
Zurück zum Zitat Kang ET, Neoh KG, Ong YK, Tan KL, Tan BTG (1991) X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron (III) state. Macromolecules 24(10):2822–2828. doi:10.1021/ma00010a028 CrossRef Kang ET, Neoh KG, Ong YK, Tan KL, Tan BTG (1991) X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron (III) state. Macromolecules 24(10):2822–2828. doi:10.​1021/​ma00010a028 CrossRef
Zurück zum Zitat Lei J, Cai Z, Martin CR (1992) Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth Met 46(1):53–69. doi:10.1016/0379-6779(92)90318-D CrossRef Lei J, Cai Z, Martin CR (1992) Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth Met 46(1):53–69. doi:10.​1016/​0379-6779(92)90318-D CrossRef
Zurück zum Zitat Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113(46):20097–20107. doi:10.1021/jp906702p CrossRef Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113(46):20097–20107. doi:10.​1021/​jp906702p CrossRef
Zurück zum Zitat Madani A, Nessark B, Brayner R, Elaissari H, Jouini M, Mangeney C, Chehimi MM (2010) Carboxylic acid-functionalized, core-shell polystyrene@polypyrrole microspheres as platforms for the attachment of CdS nanoparticles. Polymer 51(13):2825–2835. doi:10.1016/j.polymer.2010.04.020 CrossRef Madani A, Nessark B, Brayner R, Elaissari H, Jouini M, Mangeney C, Chehimi MM (2010) Carboxylic acid-functionalized, core-shell polystyrene@polypyrrole microspheres as platforms for the attachment of CdS nanoparticles. Polymer 51(13):2825–2835. doi:10.​1016/​j.​polymer.​2010.​04.​020 CrossRef
Zurück zum Zitat McCullough LA, Dufour B, Matyjaszewski K (2009) Polyaniline and polypyrrole templated on self-assembled acidic block copolymers. Macromolecules 42(21):8129–8137. doi:10.1021/ma901560k CrossRef McCullough LA, Dufour B, Matyjaszewski K (2009) Polyaniline and polypyrrole templated on self-assembled acidic block copolymers. Macromolecules 42(21):8129–8137. doi:10.​1021/​ma901560k CrossRef
Zurück zum Zitat Menon VP, Lei J, Martin CR (1996) Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem Mater 8(9):2382–2390. doi:10.1021/cm960203f CrossRef Menon VP, Lei J, Martin CR (1996) Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem Mater 8(9):2382–2390. doi:10.​1021/​cm960203f CrossRef
Zurück zum Zitat Nair S, Natarajan S, Kim SH (2005) Fabrication of electrically conducting polypyrrolepoly(ethylene oxide) composite nanofibers. Macromol Rapid Commun 26(20):1599–1603. doi:10.1002/marc.200500457 CrossRef Nair S, Natarajan S, Kim SH (2005) Fabrication of electrically conducting polypyrrolepoly(ethylene oxide) composite nanofibers. Macromol Rapid Commun 26(20):1599–1603. doi:10.​1002/​marc.​200500457 CrossRef
Zurück zum Zitat Nair S, Hsiao E, Kim SH (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene-polypyrrole core-shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18(42):5155–5161. doi:10.1039/B807007E CrossRef Nair S, Hsiao E, Kim SH (2008) Fabrication of electrically-conducting nonwoven porous mats of polystyrene-polypyrrole core-shell nanofibers via electrospinning and vapor phase polymerization. J Mater Chem 18(42):5155–5161. doi:10.​1039/​B807007E CrossRef
Zurück zum Zitat Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182. doi:10.1021/jp911272m CrossRef Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182. doi:10.​1021/​jp911272m CrossRef
Zurück zum Zitat Tan KL, Tan BTG, Kang ET, Neoh KG, Ong YK (1990) X-ray photoelectron spectroscopic studies of conductive polypyrrole complexes chemically synthesized with FeCl3. Phys Rev B 42(12):7563–7566. doi:10.1103/PhysRevB.42.7563 CrossRef Tan KL, Tan BTG, Kang ET, Neoh KG, Ong YK (1990) X-ray photoelectron spectroscopic studies of conductive polypyrrole complexes chemically synthesized with FeCl3. Phys Rev B 42(12):7563–7566. doi:10.​1103/​PhysRevB.​42.​7563 CrossRef
Zurück zum Zitat Tian B, Zerbi G (1990a) Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J Chem Phys 92(6):3892–3898. doi:10.1063/1.457795 CrossRef Tian B, Zerbi G (1990a) Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J Chem Phys 92(6):3892–3898. doi:10.​1063/​1.​457795 CrossRef
Zurück zum Zitat Xing S, Zhao G (2007) Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. J Appl Polym Sci 104(3):1987–1996. doi:10.1002/app.25912 CrossRef Xing S, Zhao G (2007) Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. J Appl Polym Sci 104(3):1987–1996. doi:10.​1002/​app.​25912 CrossRef
Zurück zum Zitat Xue P, Tao XM (2005) Morphological and electromechanical studies of fibers coated with electrically conductive polymer. J Appl Polym Sci 98(4):1844–1854. doi:10.1002/app.22318 CrossRef Xue P, Tao XM (2005) Morphological and electromechanical studies of fibers coated with electrically conductive polymer. J Appl Polym Sci 98(4):1844–1854. doi:10.​1002/​app.​22318 CrossRef
Zurück zum Zitat Zhang ZM, Li Q, Yu LM, Cui ZJ, Zhang LJ, Bowmaker GA (2011) Highly conductive polypyrrole/γ-Fe2O3 nanospheres with good magnetic properties obtained through an improved chemical one-step method. Macromolecules 44(12):4610–4615. doi:10.1021/ma2006359 CrossRef Zhang ZM, Li Q, Yu LM, Cui ZJ, Zhang LJ, Bowmaker GA (2011) Highly conductive polypyrrole/γ-Fe2O3 nanospheres with good magnetic properties obtained through an improved chemical one-step method. Macromolecules 44(12):4610–4615. doi:10.​1021/​ma2006359 CrossRef
Metadaten
Titel
Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites
verfasst von
Haihua Wang
Naravit Leaukosol
Zhibing He
Guiqiang Fei
Chuanling Si
Yonghao Ni
Publikationsdatum
01.08.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-9945-z

Weitere Artikel der Ausgabe 4/2013

Cellulose 4/2013 Zur Ausgabe