Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

28.10.2020

Microstructure Evolution Mechanism and Mechanical Properties of Mg-RE Alloy at a Critical Transition Temperature of Material Performance

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study aimed at investigating the microstructure evolution mechanism and mechanical properties of the rare earth magnesium alloy (Mg-RE alloy). The compression tests over a temperature range of 250-450 °C as well as the interrupted compression tests at a temperature of 350 °C and a strain rate of 0.1 s−1 to strains of 0.02, 0.39, 0.79 and 1.48 were conducted by using Gleeble-3800. The results show that there exists a critical transition temperature of material performance. When the temperature is lower than 350 °C, the fracture occurs at the strain of 0.31 and there was poor toughness; on the contrary, when the temperature is higher than 350 °C, there is no crack even if the strain is up to 1.49. At the same time, the material exhibited pseudo-super plastic behavior. Furtherly, the microstructure tends to be uniform and fine grains exist around some large and long grains. And, many particles emerge in the grains and at the grain boundaries. These results imply that dynamic recrystallization occurs in advance during deformation. It is found that the second-phase particles play an important role in particle stimulated nucleation effect and promote dynamic recrystallization. With further increasing strain, θ becomes negative and then tends to zero. This is because that the work hardening and strain softening compete with each other and finally reach a dynamic equilibrium. Moreover, fine grains were formed at the particles, which provided a potential path for localized shear zones. During hot deformation process, the continuous dynamic recrystallization mechanism and grain boundary strengthening were dominated. The grain growth and the particles appearance became the primary mechanism of microstructure evolution. Besides, the optimal initial reduction of 32.3% is determined. These results can help guide the development of feasible processes to enhance strength and ductility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I.P. Jain, C. Lal, and A. Jain, Hydrogen Storage in Mg: a Most Promising Material, Int. J. Hydrog. Energy, 2010, 35, p 5133–5144CrossRef I.P. Jain, C. Lal, and A. Jain, Hydrogen Storage in Mg: a Most Promising Material, Int. J. Hydrog. Energy, 2010, 35, p 5133–5144CrossRef
2.
Zurück zum Zitat S.S.A. Shah, D. Wu, W.H. Wang, and R.S. Chen, Microstructural Evolution and Mechanical Properties of a Mg-Gd-Y Alloy Processed by Impact Forging, Mater. Sci. Eng. A, 2017, 702, p 153–160CrossRef S.S.A. Shah, D. Wu, W.H. Wang, and R.S. Chen, Microstructural Evolution and Mechanical Properties of a Mg-Gd-Y Alloy Processed by Impact Forging, Mater. Sci. Eng. A, 2017, 702, p 153–160CrossRef
3.
Zurück zum Zitat X. Lu, G. Zhao, C. Zhang, L. Chen, J. Zhou, and S. Tang, Microstructure and Mechanical Properties of Mg-3.0Zn-1.0Sn-0.3Mn-0.3Ca Alloy Extruded at Different Temperatures, J. Alloys Compd., 2018, 732, p 257–269CrossRef X. Lu, G. Zhao, C. Zhang, L. Chen, J. Zhou, and S. Tang, Microstructure and Mechanical Properties of Mg-3.0Zn-1.0Sn-0.3Mn-0.3Ca Alloy Extruded at Different Temperatures, J. Alloys Compd., 2018, 732, p 257–269CrossRef
4.
Zurück zum Zitat N. Kumar, R. Choudhuri, R. Banerjee, and R.S. Mishra, Strength and Ductility Optimization of Mg-Y-Nd-Zr Alloy by Microstructural Design, Int. J. Plast., 2015, 68, p 77–97CrossRef N. Kumar, R. Choudhuri, R. Banerjee, and R.S. Mishra, Strength and Ductility Optimization of Mg-Y-Nd-Zr Alloy by Microstructural Design, Int. J. Plast., 2015, 68, p 77–97CrossRef
5.
Zurück zum Zitat J. Wang, K. Wang, F. Hou, and S. Liu, Enhanced Strength and Ductility of Mg-RE-Zn Alloy Simultaneously by Trace Ag Addition, Mater. Sci. Eng. A, 2018, 728, p 10–19CrossRef J. Wang, K. Wang, F. Hou, and S. Liu, Enhanced Strength and Ductility of Mg-RE-Zn Alloy Simultaneously by Trace Ag Addition, Mater. Sci. Eng. A, 2018, 728, p 10–19CrossRef
6.
Zurück zum Zitat D. Guan, W.M. Rainforh, L. Ma, B. Wynne, and J. Gao, Twin Recrystallization Mechanisms and Exceptional Contribution to Texture Evolution During Annealing in a Magnesium Alloy, Acta Mater., 2017, 126, p 132–144CrossRef D. Guan, W.M. Rainforh, L. Ma, B. Wynne, and J. Gao, Twin Recrystallization Mechanisms and Exceptional Contribution to Texture Evolution During Annealing in a Magnesium Alloy, Acta Mater., 2017, 126, p 132–144CrossRef
7.
Zurück zum Zitat Z. Zhang, X. Yang, Z. Xiao, J. Wang, D. Zhang, C. Liu, and T. Sakai, Dynamic Recrystallization Behaviors of a Mg-4Y-2Nd-0.2Zn-0.5Zr Alloy and the Resultant Mechanical Properties After Hot Compression, Mater. Des., 2016, 97, p 25–32CrossRef Z. Zhang, X. Yang, Z. Xiao, J. Wang, D. Zhang, C. Liu, and T. Sakai, Dynamic Recrystallization Behaviors of a Mg-4Y-2Nd-0.2Zn-0.5Zr Alloy and the Resultant Mechanical Properties After Hot Compression, Mater. Des., 2016, 97, p 25–32CrossRef
8.
Zurück zum Zitat L. Wang, G. Fang, S. Leeflang, J. Duszczyk, and J. Zhou, Investigation into the Hot Workability of the As-Extruded WE43 Magnesium Alloy Using Processing Map, J. Mech. Behav. Biomed., 2014, 32, p 270–278CrossRef L. Wang, G. Fang, S. Leeflang, J. Duszczyk, and J. Zhou, Investigation into the Hot Workability of the As-Extruded WE43 Magnesium Alloy Using Processing Map, J. Mech. Behav. Biomed., 2014, 32, p 270–278CrossRef
9.
Zurück zum Zitat T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, and G.B. Wei, Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression, J. Alloys Compd., 2015, 639, p 79–88CrossRef T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, and G.B. Wei, Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression, J. Alloys Compd., 2015, 639, p 79–88CrossRef
10.
Zurück zum Zitat B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, and M. Knezevic, Rate and Temperature Dependent Deformation Behavior of As-Cast WE43 Magnesium-Rare Earth Alloy Manufactured by Direct-Chill Casting, Mater. Sci. Eng. A, 2018, 712, p 50–64CrossRef B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, and M. Knezevic, Rate and Temperature Dependent Deformation Behavior of As-Cast WE43 Magnesium-Rare Earth Alloy Manufactured by Direct-Chill Casting, Mater. Sci. Eng. A, 2018, 712, p 50–64CrossRef
11.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28 N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28
12.
Zurück zum Zitat B. Guan, Y. Xin, X. Huang, P. Wu, and Q. Liu, Quantitative Prediction of Texture Effect on Hall-Petch Slope for Magnesium Alloys, Acta Mater., 2019, 173, p 142–152CrossRef B. Guan, Y. Xin, X. Huang, P. Wu, and Q. Liu, Quantitative Prediction of Texture Effect on Hall-Petch Slope for Magnesium Alloys, Acta Mater., 2019, 173, p 142–152CrossRef
13.
Zurück zum Zitat P. Sharifi, Y. Fan, J.P. Weiler, and J.T. Wood, Predicting the Flow Stress of High Pressure Die Cast Magnesium Alloys, J. Alloys Compd., 2014, 605, p 237–243CrossRef P. Sharifi, Y. Fan, J.P. Weiler, and J.T. Wood, Predicting the Flow Stress of High Pressure Die Cast Magnesium Alloys, J. Alloys Compd., 2014, 605, p 237–243CrossRef
14.
Zurück zum Zitat Z. Yu, Y. Huang, H. Dieringa, C.L. Mendis, R. Guan, N. Hort, and J. Meng, High Temperature Mechanical Behavior of an Extruded Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) Alloy, Mater. Sci. Eng. A, 2015, 645, p 213–224CrossRef Z. Yu, Y. Huang, H. Dieringa, C.L. Mendis, R. Guan, N. Hort, and J. Meng, High Temperature Mechanical Behavior of an Extruded Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) Alloy, Mater. Sci. Eng. A, 2015, 645, p 213–224CrossRef
15.
Zurück zum Zitat Y. Zhou, Z. Chen, J. Ji, and Z. Sun, Effects of Second Phases on Deformation Behavior and Dynamic Recrystallization of As-Cast Mg-4.3Li-4.1Zn-1.4Y Alloy During Hot Compression, J. Alloys Compd., 2019, 770, p 540–548CrossRef Y. Zhou, Z. Chen, J. Ji, and Z. Sun, Effects of Second Phases on Deformation Behavior and Dynamic Recrystallization of As-Cast Mg-4.3Li-4.1Zn-1.4Y Alloy During Hot Compression, J. Alloys Compd., 2019, 770, p 540–548CrossRef
16.
Zurück zum Zitat S. Kandalam, P. Agrawal, G.S. Avadhani, S. Kumar, and S. Suwas, Precipitation Response of the Magnesium Alloy WE43 in Strained and Unstrained Conditions, J. Alloys Compd., 2015, 623, p 317–323CrossRef S. Kandalam, P. Agrawal, G.S. Avadhani, S. Kumar, and S. Suwas, Precipitation Response of the Magnesium Alloy WE43 in Strained and Unstrained Conditions, J. Alloys Compd., 2015, 623, p 317–323CrossRef
17.
Zurück zum Zitat C. Xiang, N. Gupta, P. Coelho, and K. Cho, Effect of Microstructure on Tensile and Compressive Behavior of WE43 Alloy in As Cast and Heat Treated Conditions, Mater. Sci. Eng. A, 2018, 710, p 74–85CrossRef C. Xiang, N. Gupta, P. Coelho, and K. Cho, Effect of Microstructure on Tensile and Compressive Behavior of WE43 Alloy in As Cast and Heat Treated Conditions, Mater. Sci. Eng. A, 2018, 710, p 74–85CrossRef
18.
Zurück zum Zitat Z. Yu, C. Xu, J. Meng, K. Liu, J. Fu, and S. Kamado, Effects of Extrusion Ratio and Temperature on the Mechanical Properties and Microstructure of As-Extruded Mg-Gd-Y-(Nd/Zn)-Zr Alloys, Mater. Sci. Eng. A, 2019, 762, p 138080CrossRef Z. Yu, C. Xu, J. Meng, K. Liu, J. Fu, and S. Kamado, Effects of Extrusion Ratio and Temperature on the Mechanical Properties and Microstructure of As-Extruded Mg-Gd-Y-(Nd/Zn)-Zr Alloys, Mater. Sci. Eng. A, 2019, 762, p 138080CrossRef
19.
Zurück zum Zitat S.H. Lu, D. Wu, R.S. Chen, and E. Han, The Influence of Temperature on Twinning Behavior of a Mg-Gd-Y Alloy During Hot Compression, Mater. Sci. Eng. A, 2018, 735, p 173–181CrossRef S.H. Lu, D. Wu, R.S. Chen, and E. Han, The Influence of Temperature on Twinning Behavior of a Mg-Gd-Y Alloy During Hot Compression, Mater. Sci. Eng. A, 2018, 735, p 173–181CrossRef
20.
Zurück zum Zitat L.X. Wang, G. Fang, M.A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive Behavior and Microstructure Evolution of the As-Extruded AE21 Magnesium Alloy During Hot Compression Testing, J. Alloys Compd., 2015, 622, p 121–129CrossRef L.X. Wang, G. Fang, M.A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive Behavior and Microstructure Evolution of the As-Extruded AE21 Magnesium Alloy During Hot Compression Testing, J. Alloys Compd., 2015, 622, p 121–129CrossRef
21.
Zurück zum Zitat J. Wang, R. Liao, L. Wang, Y. Wu, and Z. Cao, Investigations of the Properties of Mg-5Al-0.3Mn-xCe (x = 0–3, wt.%) Alloys, J. Alloys Compd., 2009, 477, p 341–345CrossRef J. Wang, R. Liao, L. Wang, Y. Wu, and Z. Cao, Investigations of the Properties of Mg-5Al-0.3Mn-xCe (x = 0–3, wt.%) Alloys, J. Alloys Compd., 2009, 477, p 341–345CrossRef
22.
Zurück zum Zitat F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, W. Sun, T. Zheng, X. Cui, S. Sun, Z. Tang, X. Liu, and J. Meng, Study on the Mutual Effect of La and Gd on Microstructure and Mechanical Properties of Mg-Al-Zn Extruded Alloy, J. Alloys Compd., 2016, 688, p 1241–1250CrossRef F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, W. Sun, T. Zheng, X. Cui, S. Sun, Z. Tang, X. Liu, and J. Meng, Study on the Mutual Effect of La and Gd on Microstructure and Mechanical Properties of Mg-Al-Zn Extruded Alloy, J. Alloys Compd., 2016, 688, p 1241–1250CrossRef
23.
Zurück zum Zitat X.L. Hou, Y. Li, P. Lv, J. Cai, L. Ji, and Q.F. Guan, Hot Deformation Behavior and Microstructure Evolution of a Mg-Gd-Nd-Y-Zn Alloy, Rare Met., 2016, 35, p 532–536CrossRef X.L. Hou, Y. Li, P. Lv, J. Cai, L. Ji, and Q.F. Guan, Hot Deformation Behavior and Microstructure Evolution of a Mg-Gd-Nd-Y-Zn Alloy, Rare Met., 2016, 35, p 532–536CrossRef
24.
Zurück zum Zitat H.F. Sun, C.J. Li, and W.B. Fang, Evolution of Microstructure and Mechanical Properties of Mg-3.0Zn-0.2Ca-0.5Y Alloy by Extrusion at Various Temperatures, J. Mater. Process. Technol., 2016, 229, p 633–640CrossRef H.F. Sun, C.J. Li, and W.B. Fang, Evolution of Microstructure and Mechanical Properties of Mg-3.0Zn-0.2Ca-0.5Y Alloy by Extrusion at Various Temperatures, J. Mater. Process. Technol., 2016, 229, p 633–640CrossRef
25.
Zurück zum Zitat K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behavior and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359CrossRef K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behavior and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359CrossRef
26.
Zurück zum Zitat Z. Yu, Y. Huang, C.L. Mendis, and N. Hort, Microstructural Evolution and Mechanical Properties of Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr Alloy Prepared Via Pre-ageing and Hot Extrusion, Mater. Sci. Eng. A, 2015, 624, p 23–31CrossRef Z. Yu, Y. Huang, C.L. Mendis, and N. Hort, Microstructural Evolution and Mechanical Properties of Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr Alloy Prepared Via Pre-ageing and Hot Extrusion, Mater. Sci. Eng. A, 2015, 624, p 23–31CrossRef
27.
Zurück zum Zitat J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef
Metadaten
Titel
Microstructure Evolution Mechanism and Mechanical Properties of Mg-RE Alloy at a Critical Transition Temperature of Material Performance
Publikationsdatum
28.10.2020
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05212-y

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.