Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2018

29.01.2018

Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

verfasst von: C. Hamilton, M. Kopyściański, S. Dymek, A. Węglowska, A. Pietras

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Kumar, W. Yuan, and R.S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials, Butterworth-Heinemann (Elsevier), Oxford, 2015CrossRef N. Kumar, W. Yuan, and R.S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials, Butterworth-Heinemann (Elsevier), Oxford, 2015CrossRef
2.
Zurück zum Zitat M. Kopyściański, A. Węglowska, A. Pietras, C. Hamilton, and S. Dymek, Friction Stir Welding of Dissimilar Aluminum Alloys, Key Eng. Mater., 2016, 682, p 31–37CrossRef M. Kopyściański, A. Węglowska, A. Pietras, C. Hamilton, and S. Dymek, Friction Stir Welding of Dissimilar Aluminum Alloys, Key Eng. Mater., 2016, 682, p 31–37CrossRef
3.
Zurück zum Zitat C. Hamilton, M. Kopyściański, A. Węglowska, S. Dymek, and A. Pietras, A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding, Metall. Mater. Trans. A, 2016, 47(9), p 4519–4529CrossRef C. Hamilton, M. Kopyściański, A. Węglowska, S. Dymek, and A. Pietras, A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding, Metall. Mater. Trans. A, 2016, 47(9), p 4519–4529CrossRef
4.
Zurück zum Zitat C. Hamilton, M. Kopyściański, A. Węglowska, A. Pietras, and S. Dymek, Modeling, Microstructure and Mechanical Properties of Dissimilar 2017A and 5083 Aluminum Alloys Friction Stir Welds, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, https://doi.org/10.1177/0954405417740923 C. Hamilton, M. Kopyściański, A. Węglowska, A. Pietras, and S. Dymek, Modeling, Microstructure and Mechanical Properties of Dissimilar 2017A and 5083 Aluminum Alloys Friction Stir Welds, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, https://​doi.​org/​10.​1177/​0954405417740923​
5.
Zurück zum Zitat W.B. Lee, Y.M. Yeon, and S.B. Jung, The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scr. Mater., 2003, 49(5), p 423–428CrossRef W.B. Lee, Y.M. Yeon, and S.B. Jung, The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scr. Mater., 2003, 49(5), p 423–428CrossRef
6.
Zurück zum Zitat W.B. Lee, Y.M. Yeon, and S.B. Jung, The Mechanical Properties Related to the Dominant Microstructure in the Weld Zone of Dissimilar Formed Al Joints by Friction Stir Welding, J. Mater. Sci., 2003, 38(20), p 4183–4191CrossRef W.B. Lee, Y.M. Yeon, and S.B. Jung, The Mechanical Properties Related to the Dominant Microstructure in the Weld Zone of Dissimilar Formed Al Joints by Friction Stir Welding, J. Mater. Sci., 2003, 38(20), p 4183–4191CrossRef
7.
Zurück zum Zitat M. Ghosh, K. Kumar, S.V. Kailas, and A.K. Ray, Optimization of Friction Stir Welding Parameters for Dissimilar Aluminum Alloys, Mater. Des., 2010, 31(6), p 3033–3037CrossRef M. Ghosh, K. Kumar, S.V. Kailas, and A.K. Ray, Optimization of Friction Stir Welding Parameters for Dissimilar Aluminum Alloys, Mater. Des., 2010, 31(6), p 3033–3037CrossRef
8.
Zurück zum Zitat I. Dinaharan, K. Kalaiselvan, S.J. Vijay, and P. Raja, Effect of Material Location and Tool Rotational Speed on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded Aluminum Alloys, Arch. Civ. Mech. Eng., 2012, 12(4), p 446–454CrossRef I. Dinaharan, K. Kalaiselvan, S.J. Vijay, and P. Raja, Effect of Material Location and Tool Rotational Speed on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded Aluminum Alloys, Arch. Civ. Mech. Eng., 2012, 12(4), p 446–454CrossRef
9.
Zurück zum Zitat K. Mroczka, Characteristics of AlSi9Mg/2017A Aluminum Alloys Friction Stir Welded with Offset Welding Line and Root-side Heating, Arch. Metall. Mater., 2014, 59(4), p 1293–1299CrossRef K. Mroczka, Characteristics of AlSi9Mg/2017A Aluminum Alloys Friction Stir Welded with Offset Welding Line and Root-side Heating, Arch. Metall. Mater., 2014, 59(4), p 1293–1299CrossRef
10.
Zurück zum Zitat K. Mroczka, A. Pietras, and J. Jura, Features of 2017A and AlSi9Mg Aluminum Alloys Friction Stir Welded with Root-side Heating, Metall. Found. Eng., 2016, 42(2), p 105–115CrossRef K. Mroczka, A. Pietras, and J. Jura, Features of 2017A and AlSi9Mg Aluminum Alloys Friction Stir Welded with Root-side Heating, Metall. Found. Eng., 2016, 42(2), p 105–115CrossRef
11.
Zurück zum Zitat I. Kalemba, S. Dymek, C. Hamilton, and M. Blicharski, Microstructure and Mechanical Properties of Friction Stir Welded 7136-T76 Aluminum Alloy, Mater. Sci. Technol., 2011, 27(5), p 903–908CrossRef I. Kalemba, S. Dymek, C. Hamilton, and M. Blicharski, Microstructure and Mechanical Properties of Friction Stir Welded 7136-T76 Aluminum Alloy, Mater. Sci. Technol., 2011, 27(5), p 903–908CrossRef
12.
Zurück zum Zitat S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, Electrical and Thermal Conductivity of A319 and A356 Aluminum Alloys, J. Mater. Sci., 2001, 36(19), p 4643–4648CrossRef S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, Electrical and Thermal Conductivity of A319 and A356 Aluminum Alloys, J. Mater. Sci., 2001, 36(19), p 4643–4648CrossRef
13.
Zurück zum Zitat S.W. Kim, K. Park, S.H. Lee, K.H. Kang, and K.T. Lim, Thermophysical Properties of Automotive Metallic Disk Materials, Int. J. Thermophys., 2008, 29(6), p 2179–2188CrossRef S.W. Kim, K. Park, S.H. Lee, K.H. Kang, and K.T. Lim, Thermophysical Properties of Automotive Metallic Disk Materials, Int. J. Thermophys., 2008, 29(6), p 2179–2188CrossRef
14.
Zurück zum Zitat J.C. Lee, S.H. Lee, S.W. Kim, D.Y. Hwang, D.H. Shin, and S.W. Lee, The Thermal Behavior of Aluminum 5083 Alloys Deformed by Equal Channel Angular Pressing, Thermochim. Acta, 2010, 499(1–2), p 100–105CrossRef J.C. Lee, S.H. Lee, S.W. Kim, D.Y. Hwang, D.H. Shin, and S.W. Lee, The Thermal Behavior of Aluminum 5083 Alloys Deformed by Equal Channel Angular Pressing, Thermochim. Acta, 2010, 499(1–2), p 100–105CrossRef
15.
Zurück zum Zitat G.F. Hewitt, Heat Exchanger Design Handbook, Begell House, New York, 2008 G.F. Hewitt, Heat Exchanger Design Handbook, Begell House, New York, 2008
16.
Zurück zum Zitat S. Serajzadeh, S. Ranjbar Motlagh, S.M.H. Mirbagher, and J.M. Akhgar, Deformation Behavior of AA2017-SiCp in Warm and Hot Deformation Regions, Mater. Des., 2015, 67, p 318–323CrossRef S. Serajzadeh, S. Ranjbar Motlagh, S.M.H. Mirbagher, and J.M. Akhgar, Deformation Behavior of AA2017-SiCp in Warm and Hot Deformation Regions, Mater. Des., 2015, 67, p 318–323CrossRef
17.
Zurück zum Zitat K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Tech. Weld. Join., 2010, 15(3), p 260–266CrossRef K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Tech. Weld. Join., 2010, 15(3), p 260–266CrossRef
18.
Zurück zum Zitat M.A. Wells, D.M. Maijer, S. Jupp, G. Lockhart, and M.R. van der Winden, Mathematical Model of Deformation and Microstructural Evolution During Hot Rolling of Aluminum Alloy 5083, Mater. Sci. Technol., 2003, 19(4), p 467–476CrossRef M.A. Wells, D.M. Maijer, S. Jupp, G. Lockhart, and M.R. van der Winden, Mathematical Model of Deformation and Microstructural Evolution During Hot Rolling of Aluminum Alloy 5083, Mater. Sci. Technol., 2003, 19(4), p 467–476CrossRef
19.
Zurück zum Zitat M. Kopyscianski, S. Dymek, C. Hamilton, A. Weglowska, A. Pietras, M. Szczepanek, and M. Wojnarowska, Microstructure of Friction Stir Welded Dissimilar Wrought 2017A and Cast AlSi9Mg Aluminum Alloys, Acta Phys. Pol., A, 2017, 131(5), p 1390–1393CrossRef M. Kopyscianski, S. Dymek, C. Hamilton, A. Weglowska, A. Pietras, M. Szczepanek, and M. Wojnarowska, Microstructure of Friction Stir Welded Dissimilar Wrought 2017A and Cast AlSi9Mg Aluminum Alloys, Acta Phys. Pol., A, 2017, 131(5), p 1390–1393CrossRef
Metadaten
Titel
Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys
verfasst von
C. Hamilton
M. Kopyściański
S. Dymek
A. Węglowska
A. Pietras
Publikationsdatum
29.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3177-1

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Engineering and Performance 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.