Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2018

06.01.2018

Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy

verfasst von: Michael Regev, Tal Rashkovsky, Marcello Cabibbo, Stefano Spigarelli

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Nakai and T. Eto, New Aspect of Development of High Strength Aluminum Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, A285(1–2), p 62–68CrossRef M. Nakai and T. Eto, New Aspect of Development of High Strength Aluminum Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, A285(1–2), p 62–68CrossRef
2.
Zurück zum Zitat Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560CrossRef Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560CrossRef
3.
Zurück zum Zitat T. Dursun and C. Sutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871CrossRef T. Dursun and C. Sutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871CrossRef
4.
Zurück zum Zitat R.N. Lumley, A.J. Morton, and I.J. Polmear, Enhanced Creep Performance in an Al-Cu-Mg-Ag Alloy Through Underageing, Acta Mater., 2002, 50(14), p 3597–3608CrossRef R.N. Lumley, A.J. Morton, and I.J. Polmear, Enhanced Creep Performance in an Al-Cu-Mg-Ag Alloy Through Underageing, Acta Mater., 2002, 50(14), p 3597–3608CrossRef
5.
Zurück zum Zitat R.N. Lumley and I.J. Polmear, The Effect of Long Term Creep Exposure on the Microstructure and Properties of an Underaged Al-Cu-Mg-Ag Alloy, Scripta Mater., 2004, 50(9), p 1227–1231CrossRef R.N. Lumley and I.J. Polmear, The Effect of Long Term Creep Exposure on the Microstructure and Properties of an Underaged Al-Cu-Mg-Ag Alloy, Scripta Mater., 2004, 50(9), p 1227–1231CrossRef
6.
Zurück zum Zitat G.J. Heimerl, and J. Farquhart, Compressive and Tensile Creep of 7075-T6 and 2024-T3 Aluminum Alloy Sheet, NASA Technical Note TN D-160, Washighton, 1959. G.J. Heimerl, and J. Farquhart, Compressive and Tensile Creep of 7075-T6 and 2024-T3 Aluminum Alloy Sheet, NASA Technical Note TN D-160, Washighton, 1959.
7.
Zurück zum Zitat L. Kloc, E. Cerri, S. Spigarelli, E. Evangelista, and T.G. Langdon, Significance of Continuous Precipitation During Creep of a Powder Metallurgy Aluminum Alloy, Mater. Sci. Eng. A, 1996, A216(1–2), p 161–168CrossRef L. Kloc, E. Cerri, S. Spigarelli, E. Evangelista, and T.G. Langdon, Significance of Continuous Precipitation During Creep of a Powder Metallurgy Aluminum Alloy, Mater. Sci. Eng. A, 1996, A216(1–2), p 161–168CrossRef
8.
Zurück zum Zitat L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista, and T.G. Langdon, Creep Behavior of an Aluminum 2024 Alloy Produced by Powder Metallurgy, Acta Mater., 1997, 45(2), p 529–540CrossRef L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista, and T.G. Langdon, Creep Behavior of an Aluminum 2024 Alloy Produced by Powder Metallurgy, Acta Mater., 1997, 45(2), p 529–540CrossRef
9.
Zurück zum Zitat S. Spigarelli, M. Cabibbo, E. Evangelista, and T.G. Langdon, Creep Properties of an Al-2024 Composite Reinforced with SiC Particulates, Mater. Sci. Eng. A, 2002, A328(1–2), p 39–47CrossRef S. Spigarelli, M. Cabibbo, E. Evangelista, and T.G. Langdon, Creep Properties of an Al-2024 Composite Reinforced with SiC Particulates, Mater. Sci. Eng. A, 2002, A328(1–2), p 39–47CrossRef
10.
Zurück zum Zitat Y.C. Lin, Y.-C. Xia, Y.-Q. Jiang, and L.-T. Li, Precipitation in Al-Cu-Mg Alloy During Creep Exposure, Mater. Sci. Eng. A, 2012, A556, p 796–800CrossRef Y.C. Lin, Y.-C. Xia, Y.-Q. Jiang, and L.-T. Li, Precipitation in Al-Cu-Mg Alloy During Creep Exposure, Mater. Sci. Eng. A, 2012, A556, p 796–800CrossRef
11.
Zurück zum Zitat Y.C. Lin, Y.-C. Xia, Y.-Q. Jiang, H.-M. Zhou, and L.-T. Li, Precipitation Hardening of 2024-T3 Aluminum Alloy During Creep Aging, Mater. Sci. Eng. A, 2013, A565, p 420–429CrossRef Y.C. Lin, Y.-C. Xia, Y.-Q. Jiang, H.-M. Zhou, and L.-T. Li, Precipitation Hardening of 2024-T3 Aluminum Alloy During Creep Aging, Mater. Sci. Eng. A, 2013, A565, p 420–429CrossRef
12.
Zurück zum Zitat Y.C. Lin, Y.-C. Xia, X.-S. Ma, Y.-Q. Jiang, and M.-S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, A550, p 125–130CrossRef Y.C. Lin, Y.-C. Xia, X.-S. Ma, Y.-Q. Jiang, and M.-S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, A550, p 125–130CrossRef
13.
Zurück zum Zitat J.T. Maximov, G.V. Duncheva, A.P. Anchev, and M.D. Ichkova, Modeling of Strain Hardening and Creep Behaviour of 2024T3 Aluminium Alloy at Room and High Temperatures, Comput. Mater. Sci., 2014, 83, p 391–393CrossRef J.T. Maximov, G.V. Duncheva, A.P. Anchev, and M.D. Ichkova, Modeling of Strain Hardening and Creep Behaviour of 2024T3 Aluminium Alloy at Room and High Temperatures, Comput. Mater. Sci., 2014, 83, p 391–393CrossRef
14.
Zurück zum Zitat S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215CrossRef S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215CrossRef
15.
Zurück zum Zitat F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, A.A. Creuziger, N. Kazantseva, and J. Ilavsky, In situ Structural Characterization of Ageing Kinetics in Aluminum Alloy 2024 Across Angstrom-to-Micrometer Length Scales, Acta Mater., 2016, 111, p 385–398CrossRef F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, A.A. Creuziger, N. Kazantseva, and J. Ilavsky, In situ Structural Characterization of Ageing Kinetics in Aluminum Alloy 2024 Across Angstrom-to-Micrometer Length Scales, Acta Mater., 2016, 111, p 385–398CrossRef
16.
Zurück zum Zitat R.M. Leal and A. Loureiro, Microstructure and Mechanical Properties of Friction Stir Welds in Aluminium Alloys 2024-T3, 5083-O and 6063-T6, 2006, Mater. Sci. Forum, 2006, 514–516, p 679–701 R.M. Leal and A. Loureiro, Microstructure and Mechanical Properties of Friction Stir Welds in Aluminium Alloys 2024-T3, 5083-O and 6063-T6, 2006, Mater. Sci. Forum, 2006, 514–516, p 679–701
17.
Zurück zum Zitat R.-D. Fu, J.-F. Zhang, Y.-J. Li, J. Kang, H.-J. Liu, and F.-C. Zhang, Effect of Welding Heat Input and Post-Welding Natural Aging on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy Thin-Sheet, 2013, Sci. Eng. A, 2013, A559, p 319–324CrossRef R.-D. Fu, J.-F. Zhang, Y.-J. Li, J. Kang, H.-J. Liu, and F.-C. Zhang, Effect of Welding Heat Input and Post-Welding Natural Aging on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy Thin-Sheet, 2013, Sci. Eng. A, 2013, A559, p 319–324CrossRef
18.
Zurück zum Zitat Y. Chen, H. Ding, J.-Z. Li, J.-W. Zhao, M.-J. Fu, and X.-H. Li, Effect of Welding Heat Input and Post-Welded Heat Treatment on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy, 2015, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2524–2532CrossRef Y. Chen, H. Ding, J.-Z. Li, J.-W. Zhao, M.-J. Fu, and X.-H. Li, Effect of Welding Heat Input and Post-Welded Heat Treatment on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy, 2015, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2524–2532CrossRef
19.
Zurück zum Zitat V. Dixit, R.S. Mishra, R.J. Lederich, and R. Talwar, Influence of Process Parameters on Microstructural Evolution and Mechanical Properties in Friction Stirred Al-2024 (T3) Alloy, Sci. Technol. Weld. Join., 2009, 14(4), p 646–655CrossRef V. Dixit, R.S. Mishra, R.J. Lederich, and R. Talwar, Influence of Process Parameters on Microstructural Evolution and Mechanical Properties in Friction Stirred Al-2024 (T3) Alloy, Sci. Technol. Weld. Join., 2009, 14(4), p 646–655CrossRef
20.
Zurück zum Zitat M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J.H. Driver, Correlation Between Microstructure and Microhardness in a Friction Stir Welded 2024 Aluminium Alloy, Scripta Mater., 2005, 52, p 693–697CrossRef M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J.H. Driver, Correlation Between Microstructure and Microhardness in a Friction Stir Welded 2024 Aluminium Alloy, Scripta Mater., 2005, 52, p 693–697CrossRef
21.
Zurück zum Zitat C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458CrossRef C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458CrossRef
22.
Zurück zum Zitat P. Zhang, S.X. Li, and Z.F. Zhang, General Relationship Between Strength nd Hardness, Mater. Sci. Eng. A, 2011, A529, p 62–73CrossRef P. Zhang, S.X. Li, and Z.F. Zhang, General Relationship Between Strength nd Hardness, Mater. Sci. Eng. A, 2011, A529, p 62–73CrossRef
23.
Zurück zum Zitat S.C. Krishna, N.K. Gangwar, A.K. Jha, and B. Pant, On the Prediction od Strength from Hardness for Copper Alloys, 2013, Journal of Materials, 2013, Article ID 352578, p 1–6CrossRef S.C. Krishna, N.K. Gangwar, A.K. Jha, and B. Pant, On the Prediction od Strength from Hardness for Copper Alloys, 2013, Journal of Materials, 2013, Article ID 352578, p 1–6CrossRef
24.
Zurück zum Zitat Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H.-E. Ekström, and E. Nes, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. Mater. Trans. A, 2006, 37(6), p 1999–2006CrossRef Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H.-E. Ekström, and E. Nes, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. Mater. Trans. A, 2006, 37(6), p 1999–2006CrossRef
Metadaten
Titel
Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy
verfasst von
Michael Regev
Tal Rashkovsky
Marcello Cabibbo
Stefano Spigarelli
Publikationsdatum
06.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3122-8

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Engineering and Performance 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.