Skip to main content
Erschienen in: Journal of Nanoparticle Research 12/2015

01.12.2015 | Research Paper

Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

verfasst von: Shumin Liu, Yudong Zheng, Kun Qiao, Lei Su, Amendeep Sanghera, Wenhui Song, Lina Yue, Yi Sun

Erschienen in: Journal of Nanoparticle Research | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang G, Oyama M, Hirao K (2006) In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J Phys Chem B 110:1860–1865CrossRef Chang G, Oyama M, Hirao K (2006) In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J Phys Chem B 110:1860–1865CrossRef
Zurück zum Zitat Chou CH, Chen JC, Tai CC, Sun IW, Zen JM (2008) A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 20:771–775CrossRef Chou CH, Chen JC, Tai CC, Sun IW, Zen JM (2008) A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 20:771–775CrossRef
Zurück zum Zitat Cui H-F, Ye J-S, Liu X, Zhang W-D, Sheu F-S (2006) Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17:2334CrossRef Cui H-F, Ye J-S, Liu X, Zhang W-D, Sheu F-S (2006) Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17:2334CrossRef
Zurück zum Zitat Cui H-F, Ye J-S, Zhang W-D, Li C-M, Luong JH, Sheu F-S (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRef Cui H-F, Ye J-S, Zhang W-D, Li C-M, Luong JH, Sheu F-S (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRef
Zurück zum Zitat de la Cruz EF, Zheng YD, Torres E, Li W, Song WH, Burugapalli K (2012) Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int J Electrochem Sci 7:3577–3590 de la Cruz EF, Zheng YD, Torres E, Li W, Song WH, Burugapalli K (2012) Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int J Electrochem Sci 7:3577–3590
Zurück zum Zitat de Lannoy C-F, Jassby D, Davis D, Wiesner M (2012) A highly electrically conductive polymer–multiwalled carbon nanotube nanocomposite membrane. J Membr Sci 415:718–724CrossRef de Lannoy C-F, Jassby D, Davis D, Wiesner M (2012) A highly electrically conductive polymer–multiwalled carbon nanotube nanocomposite membrane. J Membr Sci 415:718–724CrossRef
Zurück zum Zitat De Mele M, Videla H, Arvia A (1983) The electrooxidation of glucose on platinum electrodes in buffered media. J Electroanal Chem Interfacial Electrochem 155:239–249CrossRef De Mele M, Videla H, Arvia A (1983) The electrooxidation of glucose on platinum electrodes in buffered media. J Electroanal Chem Interfacial Electrochem 155:239–249CrossRef
Zurück zum Zitat Ding K, Cao M (2008) Pyrolysis of chloroplatinic acid to directly immobilize platinum nanoparticles onto multi-walled carbon nanotubes. Russ J Electrochem 44:977–980CrossRef Ding K, Cao M (2008) Pyrolysis of chloroplatinic acid to directly immobilize platinum nanoparticles onto multi-walled carbon nanotubes. Russ J Electrochem 44:977–980CrossRef
Zurück zum Zitat Dudchenko AV, Rolf J, Russell K, Duan W, Jassby D (2014) Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes. J Membr Sci 468:1–10CrossRef Dudchenko AV, Rolf J, Russell K, Duan W, Jassby D (2014) Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes. J Membr Sci 468:1–10CrossRef
Zurück zum Zitat Ernst S, Heitbaum J, Hamann C (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem Interfacial Electrochem 100:173–183CrossRef Ernst S, Heitbaum J, Hamann C (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem Interfacial Electrochem 100:173–183CrossRef
Zurück zum Zitat Ernst S, Heitbaum J, Hamann CH (1980) The electrooxidation of glucose in phosphate buffer solutions: kinetics and reaction mechanism. Ber Bunsenges Phys Chem 84:50–55CrossRef Ernst S, Heitbaum J, Hamann CH (1980) The electrooxidation of glucose in phosphate buffer solutions: kinetics and reaction mechanism. Ber Bunsenges Phys Chem 84:50–55CrossRef
Zurück zum Zitat Fang Y, Zhang D, Qin X, Miao Z, Takahashi S, J-i Anzai, Chen Q (2012) A non-enzymatic hydrogen peroxide sensor based on poly (vinyl alcohol)–multiwalled carbon nanotubes–platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271CrossRef Fang Y, Zhang D, Qin X, Miao Z, Takahashi S, J-i Anzai, Chen Q (2012) A non-enzymatic hydrogen peroxide sensor based on poly (vinyl alcohol)–multiwalled carbon nanotubes–platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271CrossRef
Zurück zum Zitat Guo M, Hong H, Tang X, Fang H, Xu X (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1–8CrossRef Guo M, Hong H, Tang X, Fang H, Xu X (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1–8CrossRef
Zurück zum Zitat Haraguchi K, Varade D (2014) Platinum–polymer–clay nanocomposite hydrogels via exfoliated clay-mediated in situ reduction. Polymer 55:2496–2500CrossRef Haraguchi K, Varade D (2014) Platinum–polymer–clay nanocomposite hydrogels via exfoliated clay-mediated in situ reduction. Polymer 55:2496–2500CrossRef
Zurück zum Zitat Islam A, Bhuiya MAK, Islam MS (2014) Review on chemical synthesis process of platinum nanoparticles Asia Pacific. J Energy Environ 1:107–121 Islam A, Bhuiya MAK, Islam MS (2014) Review on chemical synthesis process of platinum nanoparticles Asia Pacific. J Energy Environ 1:107–121
Zurück zum Zitat Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182:1–17CrossRef Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182:1–17CrossRef
Zurück zum Zitat Li W, Zheng YD, Fu XL, Peng J, Ren LL, Wang PF, Song WH (2013) Electrochemical characterization of multi-walled carbon nanotubes/polyvinyl alcohol coated electrodes for biological applications. Int J Electrochem Sci 8:5738–5754 Li W, Zheng YD, Fu XL, Peng J, Ren LL, Wang PF, Song WH (2013) Electrochemical characterization of multi-walled carbon nanotubes/polyvinyl alcohol coated electrodes for biological applications. Int J Electrochem Sci 8:5738–5754
Zurück zum Zitat Liu SM et al (2015) Nonenzymatic glucose electrochemical oxidation based on Pt decorated MWCNTs-PVA hybrid electrode. In: Advanced materials research, 2015. Trans Tech Publications, Dürnten, pp 299–303 Liu SM et al (2015) Nonenzymatic glucose electrochemical oxidation based on Pt decorated MWCNTs-PVA hybrid electrode. In: Advanced materials research, 2015. Trans Tech Publications, Dürnten, pp 299–303
Zurück zum Zitat Oncescu V, Erickson D (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J Power Sources 196:9169–9175CrossRef Oncescu V, Erickson D (2011) A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J Power Sources 196:9169–9175CrossRef
Zurück zum Zitat Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049CrossRef Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049CrossRef
Zurück zum Zitat Rahsepar M, Pakshir M, Piao Y, Kim H (2012) Preparation of highly active 40 wt% Pt on multiwalled carbon nanotube by improved impregnation method for fuel cell applications. Fuel Cells 12:827–834CrossRef Rahsepar M, Pakshir M, Piao Y, Kim H (2012) Preparation of highly active 40 wt% Pt on multiwalled carbon nanotube by improved impregnation method for fuel cell applications. Fuel Cells 12:827–834CrossRef
Zurück zum Zitat Sagbas S, Sahiner N (2012) A novel p (AAm-co-VPA) hydrogel for the Co and Ni nanoparticle preparation and their use in hydrogel generation from NaBH4. Fuel Process Technol 104:31–36CrossRef Sagbas S, Sahiner N (2012) A novel p (AAm-co-VPA) hydrogel for the Co and Ni nanoparticle preparation and their use in hydrogel generation from NaBH4. Fuel Process Technol 104:31–36CrossRef
Zurück zum Zitat Sahiner N, Sagbas S (2013) The preparation of poly (vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids Surf A 418:76–83CrossRef Sahiner N, Sagbas S (2013) The preparation of poly (vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids Surf A 418:76–83CrossRef
Zurück zum Zitat Sahiner N, Butun S, Ilgin P (2011) Soft hydrogel particles with high functional value. Colloids Surf A 381:74–84CrossRef Sahiner N, Butun S, Ilgin P (2011) Soft hydrogel particles with high functional value. Colloids Surf A 381:74–84CrossRef
Zurück zum Zitat Song YY, Li Y, Xia XH (2007) One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis. Electrochem Commun 9:201–205CrossRef Song YY, Li Y, Xia XH (2007) One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis. Electrochem Commun 9:201–205CrossRef
Zurück zum Zitat Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301 Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301
Zurück zum Zitat Wu G-H, Song X-H, Wu Y-F, Chen X-M, Luo F, Chen X (2013) Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105:379–385CrossRef Wu G-H, Song X-H, Wu Y-F, Chen X-M, Luo F, Chen X (2013) Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105:379–385CrossRef
Zurück zum Zitat Xu Q, Yin L, Hou C, Liu X, Hu X (2012) Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing. Sens Actuat B Chem 173:716–723CrossRef Xu Q, Yin L, Hou C, Liu X, Hu X (2012) Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing. Sens Actuat B Chem 173:716–723CrossRef
Zurück zum Zitat Yang MH, Qu FL, Lu YS, Shen GL, Yu RQ (2008) In situ chemical reductive growth of platinum nanoparticles on glass slide for the mass fabrication of biosensors. Talanta 74:831–835CrossRef Yang MH, Qu FL, Lu YS, Shen GL, Yu RQ (2008) In situ chemical reductive growth of platinum nanoparticles on glass slide for the mass fabrication of biosensors. Talanta 74:831–835CrossRef
Zurück zum Zitat Ye J-S, Wen Y, De Zhang W, Gan LM, Xu GQ, Sheu F-S (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70CrossRef Ye J-S, Wen Y, De Zhang W, Gan LM, Xu GQ, Sheu F-S (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70CrossRef
Zurück zum Zitat Yu CM, Yen MJ, Chen LC (2010) A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens Bioelectron 25:2515–2521CrossRef Yu CM, Yen MJ, Chen LC (2010) A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens Bioelectron 25:2515–2521CrossRef
Zurück zum Zitat Yuan L, Yang MH, Qu FL, Shen GL, Yu RQ (2008) Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochim Acta 53:3559–3565CrossRef Yuan L, Yang MH, Qu FL, Shen GL, Yu RQ (2008) Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochim Acta 53:3559–3565CrossRef
Zurück zum Zitat Zhang F, Guo G, Fang J (2011) Highly dense and uniformly dispersed platinum nanoparticles on poly (acrylic acid) modified multi-walled carbon nanotubes for methanol oxidation. Mater Res Bull 46:905–909CrossRef Zhang F, Guo G, Fang J (2011) Highly dense and uniformly dispersed platinum nanoparticles on poly (acrylic acid) modified multi-walled carbon nanotubes for methanol oxidation. Mater Res Bull 46:905–909CrossRef
Metadaten
Titel
Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation
verfasst von
Shumin Liu
Yudong Zheng
Kun Qiao
Lei Su
Amendeep Sanghera
Wenhui Song
Lina Yue
Yi Sun
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 12/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3274-0

Weitere Artikel der Ausgabe 12/2015

Journal of Nanoparticle Research 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.