Skip to main content
Erschienen in: Cluster Computing 1/2019

23.01.2018

Minimizing movement for network connectivity in mobile sensor networks: an adaptive approach

verfasst von: Arvind Madhukar Jagtap, N. Gomathi

Erschienen in: Cluster Computing | Sonderheft 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays the most important key point in the design of wireless sensor networks (WSNs) is the sensor coverage point and network connectivity. The main practical issue in designing the essential WSN is the mobility of mobile sensors which consumes more power thereby reduces the network lifetime significantly. In order to avoid these problems, we have investigated the mobile sensor deployment (MSD) problem comprises of network connectivity and target coverage is resolved using Euclidean spanning tree model (ECST) and ECST-adaptive VABC (ECST-AVABC) method respectively. Besides, we proposed an AVABC optimization algorithm by obtaining minimum movement of mobile sensors over the network. Furthermore, the extensive simulation experiments have offered the optimal promising solutions of NCON, to the MSD problem with minimum movement and providing the extended lifetime of WSN. Finally, the experimental results states that the movement distance shown by the proposed ECST-AVABC become 4.2, 10, and 20% lesser than the standard ECST-VABC method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blumrosen, G., Hod, B., Anker, T., Dolev, D., Rubinsky, B.: Enhancing rssi-based tracking accuracy in wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–29 (2013)CrossRef Blumrosen, G., Hod, B., Anker, T., Dolev, D., Rubinsky, B.: Enhancing rssi-based tracking accuracy in wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–29 (2013)CrossRef
2.
Zurück zum Zitat Huang, R., Song, W.-Z., Xu, M., Peterson, N., Shirazi, B., LaHusen, R.: Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans. Parallel Distrib. Syst. 23(2), 321–329 (2012)CrossRef Huang, R., Song, W.-Z., Xu, M., Peterson, N., Shirazi, B., LaHusen, R.: Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans. Parallel Distrib. Syst. 23(2), 321–329 (2012)CrossRef
3.
Zurück zum Zitat S. Zhou, Wu, M.-Y., Shu, W.: Finding optimal placements for mobile sensors: wireless sensor network topology adjustment. In: Proc. IEEE 6th Circuits Syst. Symp. Emerging Technol.: Frontiers Mobile Wireless Commun., vol. 2, pp. 529–532 (2004) S. Zhou, Wu, M.-Y., Shu, W.: Finding optimal placements for mobile sensors: wireless sensor network topology adjustment. In: Proc. IEEE 6th Circuits Syst. Symp. Emerging Technol.: Frontiers Mobile Wireless Commun., vol. 2, pp. 529–532 (2004)
4.
Zurück zum Zitat Agarwal, A., Agarwal, K.: The next generation mobile wireless cellular networks–4G and beyond. Am. J. Elect. Electron. Eng. 2(3), 92–97 (2014)CrossRef Agarwal, A., Agarwal, K.: The next generation mobile wireless cellular networks–4G and beyond. Am. J. Elect. Electron. Eng. 2(3), 92–97 (2014)CrossRef
5.
Zurück zum Zitat Agarwal, A., Misra, G., Agarwal, K.: The 5th generation mobile wireless networks–key concepts, network architecture and challenges. Am. J. Elect. Electron. Eng. 3(2), 22–28 (2015) Agarwal, A., Misra, G., Agarwal, K.: The 5th generation mobile wireless networks–key concepts, network architecture and challenges. Am. J. Elect. Electron. Eng. 3(2), 22–28 (2015)
6.
Zurück zum Zitat Liu, X.-Y., Wu, K.-L., Zhu, Y., Kong, L., Wu, M.-Y.: Mobility increases the surface coverage of distributed sensor networks. Comput. Netw. 57(11), 2348–2363 (2013)CrossRef Liu, X.-Y., Wu, K.-L., Zhu, Y., Kong, L., Wu, M.-Y.: Mobility increases the surface coverage of distributed sensor networks. Comput. Netw. 57(11), 2348–2363 (2013)CrossRef
7.
Zurück zum Zitat Luo, J., Wang, D., Zhang, Q.: Double mobility: coverage of the sea surface with mobile sensor networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 13(1), 52–55 (2009)CrossRef Luo, J., Wang, D., Zhang, Q.: Double mobility: coverage of the sea surface with mobile sensor networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 13(1), 52–55 (2009)CrossRef
8.
Zurück zum Zitat Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mobile Comput. 6(4), 395–410 (2007)CrossRef Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mobile Comput. 6(4), 395–410 (2007)CrossRef
9.
Zurück zum Zitat Chin, T.L., Ramanathan, P., Saluja, K.K., Wang, K.C.: Exposure for collaborative detection using mobile sensor networks. In: Proc. IEEE 2rd Int. Conf. Mobile Adhoc Sen. Syst., pp. 743–750 (2005) Chin, T.L., Ramanathan, P., Saluja, K.K., Wang, K.C.: Exposure for collaborative detection using mobile sensor networks. In: Proc. IEEE 2rd Int. Conf. Mobile Adhoc Sen. Syst., pp. 743–750 (2005)
10.
Zurück zum Zitat Bisnik, N., Abouzeid, A.A., Isler, V.: Stochastic event capture using mobile sensors subject to a quality metric. IEEE Trans. Robot. 23(4), 676–692 (2007)CrossRef Bisnik, N., Abouzeid, A.A., Isler, V.: Stochastic event capture using mobile sensors subject to a quality metric. IEEE Trans. Robot. 23(4), 676–692 (2007)CrossRef
11.
Zurück zum Zitat Liu, B., Dousse, O., Nain, P., Towsley, D.: Dynamic coverage of mobile sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 301–311 (2013)CrossRef Liu, B., Dousse, O., Nain, P., Towsley, D.: Dynamic coverage of mobile sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 301–311 (2013)CrossRef
12.
Zurück zum Zitat Wang, G., Bhuiyan, M.Z.A., Cao, J., Wu, J.: Detecting movements of a target using face tracking in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(4), 939–949 (2014)CrossRef Wang, G., Bhuiyan, M.Z.A., Cao, J., Wu, J.: Detecting movements of a target using face tracking in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(4), 939–949 (2014)CrossRef
13.
Zurück zum Zitat He, L., Pan, J., Xu, J.: A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Trans. Mobile Comput. 12(7), 1308–1320 (2013)CrossRef He, L., Pan, J., Xu, J.: A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Trans. Mobile Comput. 12(7), 1308–1320 (2013)CrossRef
14.
Zurück zum Zitat Tan, R., Xing, G., Wang, J., So, H.C.: Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. Mobile Comput. 9(3), 317–332 (2010)CrossRef Tan, R., Xing, G., Wang, J., So, H.C.: Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. Mobile Comput. 9(3), 317–332 (2010)CrossRef
15.
Zurück zum Zitat Fu, Z., You, K.: Optimal mobile sensor scheduling for a guaranteed coverage ratio in hybrid wireless sensor networks. Int. J. Distrib. Sens. Netw. 9, 1–11 (2013) Fu, Z., You, K.: Optimal mobile sensor scheduling for a guaranteed coverage ratio in hybrid wireless sensor networks. Int. J. Distrib. Sens. Netw. 9, 1–11 (2013)
16.
Zurück zum Zitat He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Cost-effective barrier coverage by mobile sensor networks. In: Proc. IEEE 31st Annu. Int. Conf. Comput. Commun., pp. 819–827 (2012) He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Cost-effective barrier coverage by mobile sensor networks. In: Proc. IEEE 31st Annu. Int. Conf. Comput. Commun., pp. 819–827 (2012)
17.
Zurück zum Zitat Wang, G., Irwin, M.J., Berman, P., Fu, H., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. In: Proc. Int. Symp. Low Power Electron. Des., pp. 215–220 (2005) Wang, G., Irwin, M.J., Berman, P., Fu, H., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. In: Proc. Int. Symp. Low Power Electron. Des., pp. 215–220 (2005)
18.
Zurück zum Zitat Mahboubi, H., Moezzi, K., Aghdam, A.G., Sayrafian-Pour, K.: Self-deployment algorithms for field coverage in a network of nonidentical mobile sensors. In: Proc. IEEE Int. Conf. Commun., pp. 1–6 (2011) Mahboubi, H., Moezzi, K., Aghdam, A.G., Sayrafian-Pour, K.: Self-deployment algorithms for field coverage in a network of nonidentical mobile sensors. In: Proc. IEEE Int. Conf. Commun., pp. 1–6 (2011)
20.
Zurück zum Zitat Yang, Y., Fonoage, M.I., Cardei, M.: Improving network lifetime with mobile wireless sensor networks. Comput. Commun. 33(4), 409–419 (2010)CrossRef Yang, Y., Fonoage, M.I., Cardei, M.: Improving network lifetime with mobile wireless sensor networks. Comput. Commun. 33(4), 409–419 (2010)CrossRef
21.
Zurück zum Zitat Luo, W., Wang, J., Guo, J., Chen, J.: Parameterized complexity of max-lifetime target coverage in wireless sensor networks. Theor. Comput. Sci. 518, 32–41 (2014)MathSciNetCrossRefMATH Luo, W., Wang, J., Guo, J., Chen, J.: Parameterized complexity of max-lifetime target coverage in wireless sensor networks. Theor. Comput. Sci. 518, 32–41 (2014)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Wang, Y.-C., Tseng, Y.-C.: Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage. IEEE Trans. Parallel Distrib. Syst. 19(9), 1280–1294 (2008)CrossRef Wang, Y.-C., Tseng, Y.-C.: Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage. IEEE Trans. Parallel Distrib. Syst. 19(9), 1280–1294 (2008)CrossRef
23.
Zurück zum Zitat Wang, J., Luo, W., Feng, Q., Guo, J.: Parameterized complexity of min-power multicast problems in wireless ad hoc networks. Theor. Comput. Sci. 508, 16–25 (2013)MathSciNetCrossRefMATH Wang, J., Luo, W., Feng, Q., Guo, J.: Parameterized complexity of min-power multicast problems in wireless ad hoc networks. Theor. Comput. Sci. 508, 16–25 (2013)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Mathews, E., Mathew, C.: Deployment of mobile routers ensuring coverage and connectivity. Int. J. Comput. Netw. Commun. 4(1), 175–191 (2012)CrossRef Mathews, E., Mathew, C.: Deployment of mobile routers ensuring coverage and connectivity. Int. J. Comput. Netw. Commun. 4(1), 175–191 (2012)CrossRef
25.
Zurück zum Zitat Korbi, I.E., Zeadally, S.: Energy-aware sensor node relocation in mobile sensor networks. Ad Hoc Netw. 16(1), 247–265 (2014)CrossRef Korbi, I.E., Zeadally, S.: Energy-aware sensor node relocation in mobile sensor networks. Ad Hoc Netw. 16(1), 247–265 (2014)CrossRef
26.
Zurück zum Zitat Jagtap, A., Kumar, R.: A hybrid approach using Voronoi partition and swarm intelligence. Commun. J Jagtap, A., Kumar, R.: A hybrid approach using Voronoi partition and swarm intelligence. Commun. J
27.
Zurück zum Zitat Lu, M., Wu, J., Cardei, M., Li, M.: Energy-efficient connected coverage of discrete targets in wireless sensor networks. In: Proc. of 3rd Int. Conf. Netw. and Mobile Comput., pp. 43–52 (2005) Lu, M., Wu, J., Cardei, M., Li, M.: Energy-efficient connected coverage of discrete targets in wireless sensor networks. In: Proc. of 3rd Int. Conf. Netw. and Mobile Comput., pp. 43–52 (2005)
28.
Zurück zum Zitat Luo, R.C., Chen, O.: Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Trans. Ind. Electron. 59(5), 2377–2385 (2012)CrossRef Luo, R.C., Chen, O.: Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Trans. Ind. Electron. 59(5), 2377–2385 (2012)CrossRef
29.
Zurück zum Zitat Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proc. 7th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 131–142 (2006) Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proc. 7th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 131–142 (2006)
30.
Zurück zum Zitat van de Vel, M.: Theory of Convex Structures, vol. 50. North Holland, Amsterdam (1993)MATH van de Vel, M.: Theory of Convex Structures, vol. 50. North Holland, Amsterdam (1993)MATH
31.
33.
Zurück zum Zitat Liao, Y.Z., Zhang, S., Cao, J., Wang, W., Wang, J.: Minimizing movement for target coverage in mobile sensor networks. In: Proc. 32nd Int. Conf. Distrib. Comput. Syst., pp. 194–200 (2012) Liao, Y.Z., Zhang, S., Cao, J., Wang, W., Wang, J.: Minimizing movement for target coverage in mobile sensor networks. In: Proc. 32nd Int. Conf. Distrib. Comput. Syst., pp. 194–200 (2012)
36.
Zurück zum Zitat Liao, H.Z., Wang, J., Zhang, S., Cao, J.: Clique partition based relay placement in wimax mesh networks. In: Proc. IEEE Global Commun. Conf., pp. 2566–2571 (2012) Liao, H.Z., Wang, J., Zhang, S., Cao, J.: Clique partition based relay placement in wimax mesh networks. In: Proc. IEEE Global Commun. Conf., pp. 2566–2571 (2012)
37.
Zurück zum Zitat de Berg, H.M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)CrossRefMATH de Berg, H.M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)CrossRefMATH
38.
Zurück zum Zitat Shamos, M.I.: Geometric complexity. In: Proc. 7th Annu. ACM Symp. Theory Comput., pp. 224–233 (1975) Shamos, M.I.: Geometric complexity. In: Proc. 7th Annu. ACM Symp. Theory Comput., pp. 224–233 (1975)
39.
Zurück zum Zitat Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, New York (2010) Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, New York (2010)
Metadaten
Titel
Minimizing movement for network connectivity in mobile sensor networks: an adaptive approach
verfasst von
Arvind Madhukar Jagtap
N. Gomathi
Publikationsdatum
23.01.2018
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe Sonderheft 1/2019
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1660-3

Weitere Artikel der Sonderheft 1/2019

Cluster Computing 1/2019 Zur Ausgabe

Premium Partner