Skip to main content

2020 | OriginalPaper | Buchkapitel

Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation

verfasst von : Bradley R. Adams

Erschienen in: Fossil Energy

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

ACI
Activated carbon injection
APCD
Air pollution control devices
APH
Air preheater
CFD
Computational fluid dynamics
ESP
Electrostatic precipitator
FGD
Flue gas desulfurization
LNB
Low-NOx burner
OFA
Overfire air
PM
Particulate matter
SCR
Selective catalytic reduction
SDA
Spray dryer absorber
SNCR
Selective non-catalytic reduction

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat (2016) US Energy Information Administration. Electric power monthly (2016) US Energy Information Administration. Electric power monthly
5.
Zurück zum Zitat Mitchell JFB (1989) The “Greenhouse” effect and climate change. Am Geophys Union 27(1):115–139. Washington, DC Mitchell JFB (1989) The “Greenhouse” effect and climate change. Am Geophys Union 27(1):115–139. Washington, DC
6.
Zurück zum Zitat Adams B, Cremer M, Wang D (2000) Modeling non-equilibrium CO oxidation in combustion systems. In: Proceedings of the ASME heat transfer division HTD-366-5:29–34 Adams B, Cremer M, Wang D (2000) Modeling non-equilibrium CO oxidation in combustion systems. In: Proceedings of the ASME heat transfer division HTD-366-5:29–34
7.
Zurück zum Zitat Turns S (1996) An introduction to combustion. McGraw-Hill, New York Turns S (1996) An introduction to combustion. McGraw-Hill, New York
8.
Zurück zum Zitat Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications: I Analysis, vol 1311. NASA Reference Publication, Washington, DC Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications: I Analysis, vol 1311. NASA Reference Publication, Washington, DC
9.
Zurück zum Zitat Reynolds W (1986) The element-potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Stanford University, Palo Alto Reynolds W (1986) The element-potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Stanford University, Palo Alto
10.
Zurück zum Zitat Smoot L, Smith P (1985) Coal combustion and gasification. Plenum Press, New YorkCrossRef Smoot L, Smith P (1985) Coal combustion and gasification. Plenum Press, New YorkCrossRef
11.
Zurück zum Zitat Kee R, Rupley F, Miller J (1989) Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical report SAND-89-8009. Sandia National Labs Kee R, Rupley F, Miller J (1989) Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical report SAND-89-8009. Sandia National Labs
12.
Zurück zum Zitat Goodwin D (2001) Cantera user’s guide fortran version. California Institute of Technology, Pasadena Goodwin D (2001) Cantera user’s guide fortran version. California Institute of Technology, Pasadena
13.
Zurück zum Zitat Meeks E, Chou C, Garratt T (2013) Package equivalent reactor networks as reduced order models for use with CAPEOPEN compliant simulations – final report. US DOE report DOE/FE0001074-4. Meeks E, Chou C, Garratt T (2013) Package equivalent reactor networks as reduced order models for use with CAPEOPEN compliant simulations – final report. US DOE report DOE/FE0001074-4.
14.
Zurück zum Zitat Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):89–94CrossRef Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):89–94CrossRef
15.
Zurück zum Zitat Grant D, Pugmire R, Fletcher T, Kerstein A (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3:175–186CrossRef Grant D, Pugmire R, Fletcher T, Kerstein A (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3:175–186CrossRef
16.
Zurück zum Zitat Solomon P, Hamblen D, Carangelo R, Serio M, Deshpande G (1988) General model of coal devolatilization. Energy Fuel 2:405–422CrossRef Solomon P, Hamblen D, Carangelo R, Serio M, Deshpande G (1988) General model of coal devolatilization. Energy Fuel 2:405–422CrossRef
17.
Zurück zum Zitat Ubhayakar SK, Stickler DB, Von Rosenberg C, Gannon, RE (1976) Rapid devolatilization of pulverized coal in hot combustion gases. In: 16th international symposium on combustion, Pittsburgh, pp 427–436 Ubhayakar SK, Stickler DB, Von Rosenberg C, Gannon, RE (1976) Rapid devolatilization of pulverized coal in hot combustion gases. In: 16th international symposium on combustion, Pittsburgh, pp 427–436
18.
Zurück zum Zitat Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Symp Combust 16(1):411–425CrossRef Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Symp Combust 16(1):411–425CrossRef
19.
Zurück zum Zitat Hurt R, Sun J, Lunden M (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197CrossRef Hurt R, Sun J, Lunden M (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197CrossRef
20.
Zurück zum Zitat Baxter LL (1987) Particle phase behaviour in combustion environments. Ph.D. Dissertation, Chemical Engineering Department. Brigham Young University. Provo, Utah Baxter LL (1987) Particle phase behaviour in combustion environments. Ph.D. Dissertation, Chemical Engineering Department. Brigham Young University. Provo, Utah
21.
Zurück zum Zitat Pletcher RH, Tannehill JC, Anderson D (2012) Computational fluid mechanics and heat transfer, 3rd edn. CRC Press, Boca RatonMATH Pletcher RH, Tannehill JC, Anderson D (2012) Computational fluid mechanics and heat transfer, 3rd edn. CRC Press, Boca RatonMATH
22.
Zurück zum Zitat Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DCMATH Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DCMATH
23.
Zurück zum Zitat Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, the finite volume method, 2nd edn. Pearson Education Limited, England Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, the finite volume method, 2nd edn. Pearson Education Limited, England
24.
Zurück zum Zitat Eaton AM, Smoot LD, Hill SC, Eatough CN (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energy Combust Sci 25:387–436CrossRef Eaton AM, Smoot LD, Hill SC, Eatough CN (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energy Combust Sci 25:387–436CrossRef
25.
Zurück zum Zitat Williams A, Backreedy R, Habib R, Jones JM, Pourkashanian M (2002) Modelling coal combustion: the current position. Fuel 81(5):605–618CrossRef Williams A, Backreedy R, Habib R, Jones JM, Pourkashanian M (2002) Modelling coal combustion: the current position. Fuel 81(5):605–618CrossRef
26.
Zurück zum Zitat Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers, 2nd edn. Morgan-Grampian, London Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers, 2nd edn. Morgan-Grampian, London
27.
Zurück zum Zitat Spalding DB (1977) GENMIX; a general computer program for two-dimensional parabolic phenomena. Pergamon Press, Oxford Spalding DB (1977) GENMIX; a general computer program for two-dimensional parabolic phenomena. Pergamon Press, Oxford
28.
Zurück zum Zitat Spalding DB, Stephenson PL (1971) Laminar flame propagation in hydrogen & bromine mixtures. Proc Roy Soc A 324:315–337CrossRef Spalding DB, Stephenson PL (1971) Laminar flame propagation in hydrogen & bromine mixtures. Proc Roy Soc A 324:315–337CrossRef
29.
Zurück zum Zitat Gosman GD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and mass transfer in recirculating flows. Academic Press, LondonMATH Gosman GD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and mass transfer in recirculating flows. Academic Press, LondonMATH
30.
Zurück zum Zitat Pun WM, Spalding DB (1968) A procedure for predicting the velocity and temperature distributions in a confined, steady, turbulent, gaseous diffusion flame. In: Proceedings of 18th International Aeronautical Congress, Belgrade. Pergamon Press, London Pun WM, Spalding DB (1968) A procedure for predicting the velocity and temperature distributions in a confined, steady, turbulent, gaseous diffusion flame. In: Proceedings of 18th International Aeronautical Congress, Belgrade. Pergamon Press, London
31.
Zurück zum Zitat Caretto LS, Curr RM, Spalding DB (1972) Two numerical methods for three-dimensional boundary layers. Comput Methods Appl Math Eng 1(1):39–57MATHCrossRef Caretto LS, Curr RM, Spalding DB (1972) Two numerical methods for three-dimensional boundary layers. Comput Methods Appl Math Eng 1(1):39–57MATHCrossRef
32.
Zurück zum Zitat Caretto LS, Gosman AD, Patankar SV, Spalding DB (1973) Two calculation procedures for steady, three-dimensional flows with recirculation. Proc, 3rd Int Conf on Numerical Methods in Fluid Mechanics, Springer Verlag Caretto LS, Gosman AD, Patankar SV, Spalding DB (1973) Two calculation procedures for steady, three-dimensional flows with recirculation. Proc, 3rd Int Conf on Numerical Methods in Fluid Mechanics, Springer Verlag
33.
Zurück zum Zitat Zuber I (1972) A mathematical model of the combustion chamber. Staatliches Forschungsinstitut fuer Maschinenbau, Bechovice Zuber I (1972) A mathematical model of the combustion chamber. Staatliches Forschungsinstitut fuer Maschinenbau, Bechovice
34.
Zurück zum Zitat Patankar SV, Spalding DB (1974) Simultaneous predictions of flow patterns and radiation for three-dimensional flames. In: Afgan NH, Beer JM (eds) Heat transfer in flames. Wiley, New York Patankar SV, Spalding DB (1974) Simultaneous predictions of flow patterns and radiation for three-dimensional flames. In: Afgan NH, Beer JM (eds) Heat transfer in flames. Wiley, New York
35.
Zurück zum Zitat Serag-El-Din MA (1977) The numerical prediction of the flow and combustion processes in a three-dimensional combustion chamber. London University PhD thesis, Imperial College Serag-El-Din MA (1977) The numerical prediction of the flow and combustion processes in a three-dimensional combustion chamber. London University PhD thesis, Imperial College
36.
Zurück zum Zitat Spalding DB (1971) Mixing and chemical reaction in confined turbulent flames. In: 13th international symposium on combustion, Combustion Institute, Pittsburgh, pp 649–657 Spalding DB (1971) Mixing and chemical reaction in confined turbulent flames. In: 13th international symposium on combustion, Combustion Institute, Pittsburgh, pp 649–657
37.
Zurück zum Zitat Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. J Chem Eng Sci 26:95CrossRef Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. J Chem Eng Sci 26:95CrossRef
38.
Zurück zum Zitat Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: 18th symposium (international) on combustion. Elsevier, AmsterdamCrossRef Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: 18th symposium (international) on combustion. Elsevier, AmsterdamCrossRef
39.
Zurück zum Zitat Fiveland WA (1984) Discrete-ordinates solutions of the radiative-transport equation for rectangular enclosures. J Heat Transf 106:699–706CrossRef Fiveland WA (1984) Discrete-ordinates solutions of the radiative-transport equation for rectangular enclosures. J Heat Transf 106:699–706CrossRef
40.
Zurück zum Zitat Magnussen BF, Hjertager BH (1976) On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. In: 16th symposium (international) on combustion, Combustion Institute, Pittsburg, pp 719–729CrossRef Magnussen BF, Hjertager BH (1976) On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. In: 16th symposium (international) on combustion, Combustion Institute, Pittsburg, pp 719–729CrossRef
41.
Zurück zum Zitat Bray KNC (1980) Topics in applied physics. Springer, New York Bray KNC (1980) Topics in applied physics. Springer, New York
42.
Zurück zum Zitat Pope SB (1982) An improved turbulent mixing model. Combust Sci Technol 28:131CrossRef Pope SB (1982) An improved turbulent mixing model. Combust Sci Technol 28:131CrossRef
43.
Zurück zum Zitat Abbas AS, Lockwood FC (1986) Prediction of power station combustors. In: 21st symposium (international) on combustion, Elsevier, Amsterdam, pp 285–292CrossRef Abbas AS, Lockwood FC (1986) Prediction of power station combustors. In: 21st symposium (international) on combustion, Elsevier, Amsterdam, pp 285–292CrossRef
44.
Zurück zum Zitat Boyd RK, Kent JH (1986) Three-dimensional furnace computer modelling. In: 21st Symposium (international) on combustion, Elsevier, Amsterdam, pp 265–274CrossRef Boyd RK, Kent JH (1986) Three-dimensional furnace computer modelling. In: 21st Symposium (international) on combustion, Elsevier, Amsterdam, pp 265–274CrossRef
45.
Zurück zum Zitat Cetegen BM, Richter W (1987) Heat transfer modeling of a large coal-fired utility boiler and comparisons with field data. In: Proceedings of the 2nd ASME/JSME Thermal Engineering Joint Conference, vol 1. New York, pp 225–234 Cetegen BM, Richter W (1987) Heat transfer modeling of a large coal-fired utility boiler and comparisons with field data. In: Proceedings of the 2nd ASME/JSME Thermal Engineering Joint Conference, vol 1. New York, pp 225–234
46.
Zurück zum Zitat De Michele G, Ghiribelli L, Pasini S, Tozzi A (1989) A 3-D code for predicting radiative and convective heat transfer in boilers. In: Shah, RK (ed) Heat transfer phenomena in radiation, combustion, and fires, vol. 106, HTD – ASME, New York, pp 275–286 De Michele G, Ghiribelli L, Pasini S, Tozzi A (1989) A 3-D code for predicting radiative and convective heat transfer in boilers. In: Shah, RK (ed) Heat transfer phenomena in radiation, combustion, and fires, vol. 106, HTD – ASME, New York, pp 275–286
47.
Zurück zum Zitat Fiveland WA, Wessel RA (1986) FURMO: A numerical model for predicting performance of three-dimensional pulverized-fuel fired furnaces. ASME Paper 86-HT-35. ASME, New York Fiveland WA, Wessel RA (1986) FURMO: A numerical model for predicting performance of three-dimensional pulverized-fuel fired furnaces. ASME Paper 86-HT-35. ASME, New York
48.
Zurück zum Zitat Gillis PA, Smith PJ (1990) An evaluation of three-dimensional computational combustion and fluid-dynamics for industrial furnace geometries. In: 23rd symposium (international) on combustion, Elsevier, Amsterdam, pp 981–991CrossRef Gillis PA, Smith PJ (1990) An evaluation of three-dimensional computational combustion and fluid-dynamics for industrial furnace geometries. In: 23rd symposium (international) on combustion, Elsevier, Amsterdam, pp 981–991CrossRef
49.
Zurück zum Zitat Lockwood FC, Mahmud T (1988) The prediction of swirl burner pulverized coal flames. In: 22nd symposium (international) on combustion, Elsevier, Amsterdam, pp 165–173CrossRef Lockwood FC, Mahmud T (1988) The prediction of swirl burner pulverized coal flames. In: 22nd symposium (international) on combustion, Elsevier, Amsterdam, pp 165–173CrossRef
50.
Zurück zum Zitat Smith PJ, Fletcher TH, Smoot LD (1981) Model for pulverized coal fired reactors. In: 18th symposium (international) on combustion, Elsevier, Amsterdam, pp 1285–1293CrossRef Smith PJ, Fletcher TH, Smoot LD (1981) Model for pulverized coal fired reactors. In: 18th symposium (international) on combustion, Elsevier, Amsterdam, pp 1285–1293CrossRef
51.
Zurück zum Zitat Smoot LD (1984) Modeling of coal-combustion processes. Prog Energy Combust Sci 10:229–272CrossRef Smoot LD (1984) Modeling of coal-combustion processes. Prog Energy Combust Sci 10:229–272CrossRef
52.
Zurück zum Zitat Truelove JS (1984) The modelling of flow and combustion in swirled, pulverized-coal burners. In: 20th symposium (international) on combustion, Elsevier, Amsterdam, pp 523–530CrossRef Truelove JS (1984) The modelling of flow and combustion in swirled, pulverized-coal burners. In: 20th symposium (international) on combustion, Elsevier, Amsterdam, pp 523–530CrossRef
53.
Zurück zum Zitat Smoot L, Pratt DT (1979) Pulverized coal combustion and gasification. Plenum Press, New YorkCrossRef Smoot L, Pratt DT (1979) Pulverized coal combustion and gasification. Plenum Press, New YorkCrossRef
54.
Zurück zum Zitat Adams B, Smith PJ (1993) Three dimensional discrete ordinates modelling of radiative transfer in a geometrically complex furnace. Combust Sci Technol 88(5–6):293–308CrossRef Adams B, Smith PJ (1993) Three dimensional discrete ordinates modelling of radiative transfer in a geometrically complex furnace. Combust Sci Technol 88(5–6):293–308CrossRef
55.
Zurück zum Zitat Viskanta R, Menguc MP (1987) Radiation heat transfer in combustion systems. Prog Energy Combust Sci 13:97–160CrossRef Viskanta R, Menguc MP (1987) Radiation heat transfer in combustion systems. Prog Energy Combust Sci 13:97–160CrossRef
56.
Zurück zum Zitat Fiveland W, Jessee P (1995) Comparison of discrete ordinates formulations for radiative heat transfer in multidimensional geometries. J Thermophys Heat Transfer 9:1CrossRef Fiveland W, Jessee P (1995) Comparison of discrete ordinates formulations for radiative heat transfer in multidimensional geometries. J Thermophys Heat Transfer 9:1CrossRef
57.
Zurück zum Zitat Fletcher TH, Ma J, Rigby JR, Brown AL, Webb BW (1997) Soot in coal combustion systems. Prog Energy Combust Sci 23:283–301CrossRef Fletcher TH, Ma J, Rigby JR, Brown AL, Webb BW (1997) Soot in coal combustion systems. Prog Energy Combust Sci 23:283–301CrossRef
58.
Zurück zum Zitat Adams BR, Smith PJ (1995) Modeling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion. Combust Sci Technol 109:121–140CrossRef Adams BR, Smith PJ (1995) Modeling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion. Combust Sci Technol 109:121–140CrossRef
59.
Zurück zum Zitat Leung KM, Lindstedt P, Jones WP (1991) A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame 87:289–305CrossRef Leung KM, Lindstedt P, Jones WP (1991) A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame 87:289–305CrossRef
60.
Zurück zum Zitat Magnussen B, Hjertager B (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Combust 16(1):719–729CrossRef Magnussen B, Hjertager B (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Combust 16(1):719–729CrossRef
61.
Zurück zum Zitat Peters N (1988) Laminar flamelet concepts in turbulent combustion. Symp Combust 21(1):1231–1250CrossRef Peters N (1988) Laminar flamelet concepts in turbulent combustion. Symp Combust 21(1):1231–1250CrossRef
62.
Zurück zum Zitat Christo F, Dally B (2005) Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust Flame 142(1–2):117–129CrossRef Christo F, Dally B (2005) Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust Flame 142(1–2):117–129CrossRef
63.
Zurück zum Zitat Gran I, Magnussen B (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 1: influence of turbulence modeling and boundary conditions. Combust Sci Technol 119(1–6):171–190CrossRef Gran I, Magnussen B (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 1: influence of turbulence modeling and boundary conditions. Combust Sci Technol 119(1–6):171–190CrossRef
64.
Zurück zum Zitat Falcitellia M, Pasinib S, Tognotti L (2002) Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach. Comput Chem Eng 26(9):1171–1183CrossRef Falcitellia M, Pasinib S, Tognotti L (2002) Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach. Comput Chem Eng 26(9):1171–1183CrossRef
65.
Zurück zum Zitat Cremer M, Valentine J, Shim H, Davis K, Adams B, Letcavits J, Vierstra S (2003) CFD-based development, design, and installation of cost-effective NOx control strategies for coal-fired boilers. In: The mega symposium: EPRI-DOE-EPA combined utility air pollutant control symposium, AWMA, Washington, DC Cremer M, Valentine J, Shim H, Davis K, Adams B, Letcavits J, Vierstra S (2003) CFD-based development, design, and installation of cost-effective NOx control strategies for coal-fired boilers. In: The mega symposium: EPRI-DOE-EPA combined utility air pollutant control symposium, AWMA, Washington, DC
66.
Zurück zum Zitat Cremer M, Adams B, Valentine J, Letcavits J, Vierstra S (2002) Use of CFD modeling to guide design and implementation of overfire air for NOx control in coal-fired boilers. In: Proceedings of nineteenth annual international Pittsburgh coal conference, Pittsburgh Cremer M, Adams B, Valentine J, Letcavits J, Vierstra S (2002) Use of CFD modeling to guide design and implementation of overfire air for NOx control in coal-fired boilers. In: Proceedings of nineteenth annual international Pittsburgh coal conference, Pittsburgh
67.
Zurück zum Zitat Adams B, Cremer M, Valentine J, Bhamidipati V, O’Connor D, Letcavits J, Vierstra S (2002) Use of CFD modeling for design of NOx reduction systems in utility boilers. In: International joint power generation conference, Phoenix Adams B, Cremer M, Valentine J, Bhamidipati V, O’Connor D, Letcavits J, Vierstra S (2002) Use of CFD modeling for design of NOx reduction systems in utility boilers. In: International joint power generation conference, Phoenix
68.
Zurück zum Zitat Cremer M, Wang D, Montgomery C, Adams B (2001) Utilization of reduced mechanism methods in CFD simulations for improved NOx predictions in utility boilers and furnaces. In: Joint AFRC/JFRC/IEA international combustion symposium, Kauai Cremer M, Wang D, Montgomery C, Adams B (2001) Utilization of reduced mechanism methods in CFD simulations for improved NOx predictions in utility boilers and furnaces. In: Joint AFRC/JFRC/IEA international combustion symposium, Kauai
69.
Zurück zum Zitat Adams B, Wang DH, Cremer M, Frizzell K, Conn S (2001) Modeling NOx reduction from fuel lean gas reburning and selective non-catalytic reduction combined with overfire air at OMU’s Smith Unit 1. US EPA/DOE/EPRI combined power plant air pollutant control symposium: The mega symposium, paper 147, Chicago, AWMA, Washington, DC Adams B, Wang DH, Cremer M, Frizzell K, Conn S (2001) Modeling NOx reduction from fuel lean gas reburning and selective non-catalytic reduction combined with overfire air at OMU’s Smith Unit 1. US EPA/DOE/EPRI combined power plant air pollutant control symposium: The mega symposium, paper 147, Chicago, AWMA, Washington, DC
70.
Zurück zum Zitat Wang H, Harb J (2007) Modeling of ash deposit growth and sintering in PC-fired boilers. Impact of mineral impurities in solid fuel combustion, Gupta R, Wall T, Baxter L (Eds), Berlin Springer Science & Business Media 697—708 Wang H, Harb J (2007) Modeling of ash deposit growth and sintering in PC-fired boilers. Impact of mineral impurities in solid fuel combustion, Gupta R, Wall T, Baxter L (Eds), Berlin Springer Science & Business Media 697—708
71.
Zurück zum Zitat Lee1 FCC, Lockwood FC (1999) Modelling ash deposition in pulverized coal-fired applications. Prog Energy Combust Sci 25(2):117–132CrossRef Lee1 FCC, Lockwood FC (1999) Modelling ash deposition in pulverized coal-fired applications. Prog Energy Combust Sci 25(2):117–132CrossRef
72.
Zurück zum Zitat Rushdi A, Gupta R, Sharma A, Holcombe D (2005) Mechanistic prediction of ash deposition in a pilot-scale test facility. Fuel 84(10):1246–1258CrossRef Rushdi A, Gupta R, Sharma A, Holcombe D (2005) Mechanistic prediction of ash deposition in a pilot-scale test facility. Fuel 84(10):1246–1258CrossRef
73.
Zurück zum Zitat Pedel J, Thornock JN, Smith PJ (2012) Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments. Energy Fuel 26(11):6686–6694CrossRef Pedel J, Thornock JN, Smith PJ (2012) Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments. Energy Fuel 26(11):6686–6694CrossRef
74.
Zurück zum Zitat Pedel J, Thornock JN, Smith PJ (2013) Ignition of co-axial turbulent diffusion oxy-coal jet flames: experiments and simulations collaboration. Combust Flame 160(6):112–1128CrossRef Pedel J, Thornock JN, Smith PJ (2013) Ignition of co-axial turbulent diffusion oxy-coal jet flames: experiments and simulations collaboration. Combust Flame 160(6):112–1128CrossRef
75.
Zurück zum Zitat Warzecha P, Boguslawski A (2014) LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies. Energy 66:732–743CrossRef Warzecha P, Boguslawski A (2014) LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies. Energy 66:732–743CrossRef
76.
Zurück zum Zitat Stein OT, Olenik G, Kronenburg A et al (2013) Towards comprehensive coal combustion modelling for LES. Flow Turbul Combust 90:859CrossRef Stein OT, Olenik G, Kronenburg A et al (2013) Towards comprehensive coal combustion modelling for LES. Flow Turbul Combust 90:859CrossRef
77.
Zurück zum Zitat Kulaots I, Hurt RH, Suuberg EM (2004) Size distribution of unburned carbon in coal fly ash and its implications. Fuel 83:223–230CrossRef Kulaots I, Hurt RH, Suuberg EM (2004) Size distribution of unburned carbon in coal fly ash and its implications. Fuel 83:223–230CrossRef
78.
Zurück zum Zitat Wang C, Seames WS, Gadgil M, Hrdlicka J, Fix G (2007) Comparison of coal ash particle size distributions from Berner and Dekati low pressure impactors. Aerosol Sci Technol 41:1049–1062CrossRef Wang C, Seames WS, Gadgil M, Hrdlicka J, Fix G (2007) Comparison of coal ash particle size distributions from Berner and Dekati low pressure impactors. Aerosol Sci Technol 41:1049–1062CrossRef
79.
Zurück zum Zitat Seaton A, Godden D, MacNee W, Donaldson K, Gooden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178CrossRef Seaton A, Godden D, MacNee W, Donaldson K, Gooden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178CrossRef
80.
Zurück zum Zitat U.S. Environmental Protection Agency (1998) Particulate matter research needs for human health risk assessment to support future reviews of the national ambient air quality standards for particulate matter. National Center for Environmental Assessment, Research Triangle Park. EPA/600/R-97/132F U.S. Environmental Protection Agency (1998) Particulate matter research needs for human health risk assessment to support future reviews of the national ambient air quality standards for particulate matter. National Center for Environmental Assessment, Research Triangle Park. EPA/600/R-97/132F
81.
Zurück zum Zitat U.S. Environmental Protection Agency (1998) Stationary source control techniques document for fine particulate matter. Research Triangle Park: National Center for Environmental Assessment. EPA 68-D-98-026 U.S. Environmental Protection Agency (1998) Stationary source control techniques document for fine particulate matter. Research Triangle Park: National Center for Environmental Assessment. EPA 68-D-98-026
82.
Zurück zum Zitat Wilder J, Pilat M (1983) Calculated droplet size distributions and opacities of condensed sulfuric acid aerosols. APCA J 33(9)CrossRef Wilder J, Pilat M (1983) Calculated droplet size distributions and opacities of condensed sulfuric acid aerosols. APCA J 33(9)CrossRef
83.
Zurück zum Zitat (2016) ASTM D1857/D1857M-16 standard test method for fusibility of coal and coke ash. ASTM International, West Conshohocken (2016) ASTM D1857/D1857M-16 standard test method for fusibility of coal and coke ash. ASTM International, West Conshohocken
84.
Zurück zum Zitat Walsh PM, Sayre AN, Loehden DO, Monroe LS, Beér JM, Sarofim AF (1990) Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth. Prog Energy Combust Sci 16(4):327–345CrossRef Walsh PM, Sayre AN, Loehden DO, Monroe LS, Beér JM, Sarofim AF (1990) Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth. Prog Energy Combust Sci 16(4):327–345CrossRef
85.
Zurück zum Zitat Miller B (1985) Clean coal engineering technology, 2nd edn. Butterworth-Heinemann Elsevier Ltd, OxfordCrossRef Miller B (1985) Clean coal engineering technology, 2nd edn. Butterworth-Heinemann Elsevier Ltd, OxfordCrossRef
86.
Zurück zum Zitat Raask E (1985) Mineral impurities in coal combustion: behavior, problems, and remedial measures. Hemisphere Publishing Corp, Washington, DC Raask E (1985) Mineral impurities in coal combustion: behavior, problems, and remedial measures. Hemisphere Publishing Corp, Washington, DC
87.
Zurück zum Zitat López C, Unterberger S, Maier J, Hein KRG (2003) Overview of actual methods for characterization of ash deposition. In: Heat exchanger fouling and cleaning: fundamentals and applications, engineering conferences international, New York, NY López C, Unterberger S, Maier J, Hein KRG (2003) Overview of actual methods for characterization of ash deposition. In: Heat exchanger fouling and cleaning: fundamentals and applications, engineering conferences international, New York, NY
88.
Zurück zum Zitat Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120CrossRef Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120CrossRef
89.
Zurück zum Zitat Dumont BJ, Mudry RG (2003) Computational fluid dynamic modeling of electrostatic precipitators. In: Electric power conference, Houston, TX Dumont BJ, Mudry RG (2003) Computational fluid dynamic modeling of electrostatic precipitators. In: Electric power conference, Houston, TX
90.
Zurück zum Zitat Choi BS, Fletcher CAJ (1997) Computation of particle transport in an electrostatic precipitator. J Electrost 40–41:413–418CrossRef Choi BS, Fletcher CAJ (1997) Computation of particle transport in an electrostatic precipitator. J Electrost 40–41:413–418CrossRef
91.
Zurück zum Zitat Guo B, Yu A, Guo J (2015) Numerical modelling of ESP for design optimization. The 7th World Congress on Particle Technology (WCPT7). Procedia Eng 102:1366–1372CrossRef Guo B, Yu A, Guo J (2015) Numerical modelling of ESP for design optimization. The 7th World Congress on Particle Technology (WCPT7). Procedia Eng 102:1366–1372CrossRef
92.
Zurück zum Zitat Liu Q, Zhang S, Chen J (2015) Numerical analysis of charged particle collection in wire-plate ESP. J Electrost 74:56–65CrossRef Liu Q, Zhang S, Chen J (2015) Numerical analysis of charged particle collection in wire-plate ESP. J Electrost 74:56–65CrossRef
93.
Zurück zum Zitat Soldati A (2000) On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. J Aerosol Sci 31(3):293–305CrossRef Soldati A (2000) On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. J Aerosol Sci 31(3):293–305CrossRef
94.
Zurück zum Zitat Turner J, McKenna J, Mycock J, Nunn A, Vatavuk W (1998) Baghouses and filters. EPA/452/B-02-001, OAQPS, US EPA, Research Triangle Park, NC Turner J, McKenna J, Mycock J, Nunn A, Vatavuk W (1998) Baghouses and filters. EPA/452/B-02-001, OAQPS, US EPA, Research Triangle Park, NC
95.
Zurück zum Zitat Broadway RM, Cass RW (1975) Fractional efficiency of a utility boiler baghouse: Nucla generating plant. EPA-600/2-75-013-a, Office of Research and Development, US EPA, Washington, DC Broadway RM, Cass RW (1975) Fractional efficiency of a utility boiler baghouse: Nucla generating plant. EPA-600/2-75-013-a, Office of Research and Development, US EPA, Washington, DC
96.
Zurück zum Zitat Cass RW, Broadway RM (1976) Fractional efficiency of a utility boiler baghouse: Sunbury Steam Electric Station. EPA-600/2-76-077a, Office of Research and Development, US EPA, Research Triangle Park, NC Cass RW, Broadway RM (1976) Fractional efficiency of a utility boiler baghouse: Sunbury Steam Electric Station. EPA-600/2-76-077a, Office of Research and Development, US EPA, Research Triangle Park, NC
97.
Zurück zum Zitat Dennis R, Klemm HA (1980) Modeling concepts for pulse jet filtration. JAPCA 30(l):38–43 Dennis R, Klemm HA (1980) Modeling concepts for pulse jet filtration. JAPCA 30(l):38–43
98.
Zurück zum Zitat Leith D, Ellenbecker MJ (1980) Theory for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 14:845–852CrossRef Leith D, Ellenbecker MJ (1980) Theory for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 14:845–852CrossRef
99.
Zurück zum Zitat Koehler JL, Leith D (1983) Model calibration for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 17(10):1909–1913CrossRef Koehler JL, Leith D (1983) Model calibration for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 17(10):1909–1913CrossRef
100.
Zurück zum Zitat Spinti JP, Pershing DW (2003) The fate of char-N at pulverized coal conditions. Combust Flame 135:299–313CrossRef Spinti JP, Pershing DW (2003) The fate of char-N at pulverized coal conditions. Combust Flame 135:299–313CrossRef
102.
Zurück zum Zitat Dryer G (1973) High temperature oxidation of CO and CH4. In: 14 symbosium (international) on combustion, The Combustion Institute, Pittsburgh, pp 987–1003CrossRef Dryer G (1973) High temperature oxidation of CO and CH4. In: 14 symbosium (international) on combustion, The Combustion Institute, Pittsburgh, pp 987–1003CrossRef
103.
Zurück zum Zitat Miller B (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338CrossRef Miller B (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338CrossRef
104.
Zurück zum Zitat Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):9–94 Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):9–94
105.
Zurück zum Zitat Glassman I (1987) Combustion, 2nd edn. Academic, Orlando Glassman I (1987) Combustion, 2nd edn. Academic, Orlando
106.
Zurück zum Zitat Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. In: Proceedings of the 13th symposium (international) on combustion, Elsevier, Amsterdam, pp 373–389CrossRef Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. In: Proceedings of the 13th symposium (international) on combustion, Elsevier, Amsterdam, pp 373–389CrossRef
107.
Zurück zum Zitat Pershing DW, Wendt JOL (1977) The influence of flame temperature and coal composition on thermal and fuel NOx. In: Proceedings of the 16th symposium (international) on combustion, pp 389–399 Pershing DW, Wendt JOL (1977) The influence of flame temperature and coal composition on thermal and fuel NOx. In: Proceedings of the 16th symposium (international) on combustion, pp 389–399
108.
Zurück zum Zitat Sarofim AF, Beér JM (1990) The fate of fuel nitrogen and ash during combustion of pulverized coal, chapter 4. In: Lemieux PM (ed) Air and Energy Engineering Research Laboratory (eds) Pulverized coal combustion: pollutant formation and control. U.S. Environmental Protection Agency/Air and Energy Engineering Research Laboratory, Research Triangle Park, pp 1970–1980 Sarofim AF, Beér JM (1990) The fate of fuel nitrogen and ash during combustion of pulverized coal, chapter 4. In: Lemieux PM (ed) Air and Energy Engineering Research Laboratory (eds) Pulverized coal combustion: pollutant formation and control. U.S. Environmental Protection Agency/Air and Energy Engineering Research Laboratory, Research Triangle Park, pp 1970–1980
109.
Zurück zum Zitat Hayhurst AN, Vince IM (1980) Nitric oxide formation from N2 in flames. Prog Energy Combust Sci 6:35–51. Elsevier, AmsterdamCrossRef Hayhurst AN, Vince IM (1980) Nitric oxide formation from N2 in flames. Prog Energy Combust Sci 6:35–51. Elsevier, AmsterdamCrossRef
110.
Zurück zum Zitat Zel’dovich YB (1946) The oxidation of nitrogen in combustion explosions. Acta Physicochim USSR 21:577–628 Zel’dovich YB (1946) The oxidation of nitrogen in combustion explosions. Acta Physicochim USSR 21:577–628
112.
Zurück zum Zitat Perry S, Fletcher TH, Pugmire RJ, Solum MS (2000) A global free-radical mechanism for light gas nitrogen release from coal during devolatilization. Energy Fuel 14:1094–1102CrossRef Perry S, Fletcher TH, Pugmire RJ, Solum MS (2000) A global free-radical mechanism for light gas nitrogen release from coal during devolatilization. Energy Fuel 14:1094–1102CrossRef
113.
Zurück zum Zitat Sung CJ, Law CK, Chen JY (2001) Augmented reduced mechanisms for NO emission in methane oxidation. Combust Flame 125(1–2):906–919CrossRef Sung CJ, Law CK, Chen JY (2001) Augmented reduced mechanisms for NO emission in methane oxidation. Combust Flame 125(1–2):906–919CrossRef
114.
Zurück zum Zitat Lu T, Law CK (2008) A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust Flame 154(4):761–774CrossRef Lu T, Law CK (2008) A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust Flame 154(4):761–774CrossRef
115.
Zurück zum Zitat Massias A, Diamantis D, Mastorakos E, Goussis D (1999) Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust Theor Model 3(2):233–257MATHCrossRef Massias A, Diamantis D, Mastorakos E, Goussis D (1999) Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust Theor Model 3(2):233–257MATHCrossRef
116.
Zurück zum Zitat Meadows ML (1997) Summary report control of NOx emissions by reburning. U.S. Environmental Protection Agency, Washington, DC. EPA/625/R-96/001 (NTIS 97-208201) Meadows ML (1997) Summary report control of NOx emissions by reburning. U.S. Environmental Protection Agency, Washington, DC. EPA/625/R-96/001 (NTIS 97-208201)
117.
Zurück zum Zitat Wendt J, Sternling C, Matovich M (1973) Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. In: 14th symposium (international) on combustion, Elsevier, Amsterdam, pp 897–904CrossRef Wendt J, Sternling C, Matovich M (1973) Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. In: 14th symposium (international) on combustion, Elsevier, Amsterdam, pp 897–904CrossRef
118.
Zurück zum Zitat Yagiela A, Maringo G, Newell R, Farzan H (1992) Demonstration of coal reburning for cyclone boiler NOx control. In: First annual clean coal technology conference, Cleveland Yagiela A, Maringo G, Newell R, Farzan H (1992) Demonstration of coal reburning for cyclone boiler NOx control. In: First annual clean coal technology conference, Cleveland
119.
Zurück zum Zitat Folsom B, Payne R, Sommer T, Engelhardt D, Ritz H (1995) Demonstration of gas reburning-low NOx burner technology for cost-effective NOx emission control. In: Fourth annual clean coal technology conference, Denver Folsom B, Payne R, Sommer T, Engelhardt D, Ritz H (1995) Demonstration of gas reburning-low NOx burner technology for cost-effective NOx emission control. In: Fourth annual clean coal technology conference, Denver
120.
Zurück zum Zitat Folsom B, Sommer T, Englehardt D, O’Dea D, Hunsicker S, Watts (1997) Coal reburning for cost-effective NOx compliance. In: 5th annual clean coal technology conference, Tampa Folsom B, Sommer T, Englehardt D, O’Dea D, Hunsicker S, Watts (1997) Coal reburning for cost-effective NOx compliance. In: 5th annual clean coal technology conference, Tampa
121.
Zurück zum Zitat Savichky W, Gaufillet G, Mahlmeister M, Englehardt D, Mereb J, Watts J (1998) Micronized coal reburning demonstration of NOx control. In: 6th annual clean coal technology conference, Reno Savichky W, Gaufillet G, Mahlmeister M, Englehardt D, Mereb J, Watts J (1998) Micronized coal reburning demonstration of NOx control. In: 6th annual clean coal technology conference, Reno
122.
Zurück zum Zitat Cremer MA, Adams BR, O’Connor DC, Bhamidipati VN, Broderick RG (2001) Design and demonstration of rich reagent injection (RRI) for NOx reduction at Conectiv’s B.L. England Station. US EPA/DOE/EPRI combined power plant air pollutant control symposium: the Mega symposium, Chicago, AWMA, Washington, DC Cremer MA, Adams BR, O’Connor DC, Bhamidipati VN, Broderick RG (2001) Design and demonstration of rich reagent injection (RRI) for NOx reduction at Conectiv’s B.L. England Station. US EPA/DOE/EPRI combined power plant air pollutant control symposium: the Mega symposium, Chicago, AWMA, Washington, DC
123.
Zurück zum Zitat Wan HP, Yang CS, Adams BR, Chen SL (2008) Controlling LOI from coal reburning in a coal-fired boiler. Fuel 87:290–296CrossRef Wan HP, Yang CS, Adams BR, Chen SL (2008) Controlling LOI from coal reburning in a coal-fired boiler. Fuel 87:290–296CrossRef
124.
Zurück zum Zitat Wu KT, Lee HT, Juch CI, Wan HP, Shim HS, Adams BR, Chen SL (2004) Study of syngas co-firing and reburning in a coal fired boiler. Fuel 83:1991–2000CrossRef Wu KT, Lee HT, Juch CI, Wan HP, Shim HS, Adams BR, Chen SL (2004) Study of syngas co-firing and reburning in a coal fired boiler. Fuel 83:1991–2000CrossRef
125.
Zurück zum Zitat Lyon R (1987) Thermal DeNOx: controlling nitrogen oxides emissions by a noncatalytic process. Environ Sci Technol 21(3):231CrossRef Lyon R (1987) Thermal DeNOx: controlling nitrogen oxides emissions by a noncatalytic process. Environ Sci Technol 21(3):231CrossRef
126.
Zurück zum Zitat Blejchař T, Dolníčková D (2013) Numerical simulation of SNCR technology with simplified chemical kinetics model. In: EPJ web of conferences, 45, 01015, EDP Sciences Blejchař T, Dolníčková D (2013) Numerical simulation of SNCR technology with simplified chemical kinetics model. In: EPJ web of conferences, 45, 01015, EDP Sciences
127.
Zurück zum Zitat Javed M, Ahmed Z, Ibrahim M, Irfan N (2008) A comparative kinetic study of SNCR process using ammonia. Braz J Chem Eng 25(1):109–117CrossRef Javed M, Ahmed Z, Ibrahim M, Irfan N (2008) A comparative kinetic study of SNCR process using ammonia. Braz J Chem Eng 25(1):109–117CrossRef
128.
Zurück zum Zitat Muzio L, Quartucy G (1993) State-of-the-art assessment of SNCR technology. Topical report no. TR-102414. Electric Power Research Institute, Palo Alto Muzio L, Quartucy G (1993) State-of-the-art assessment of SNCR technology. Topical report no. TR-102414. Electric Power Research Institute, Palo Alto
129.
Zurück zum Zitat U.S. Department of Energy (2005) Selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers. Topical report no 23. U.S. Department of Energy, Pittsburgh U.S. Department of Energy (2005) Selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers. Topical report no 23. U.S. Department of Energy, Pittsburgh
130.
Zurück zum Zitat Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal A Gen 222(1–2):221–236CrossRef Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal A Gen 222(1–2):221–236CrossRef
131.
Zurück zum Zitat Yun BK, Kim MY (2013) Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases. Appl Therm Eng 50:152–158CrossRef Yun BK, Kim MY (2013) Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases. Appl Therm Eng 50:152–158CrossRef
132.
Zurück zum Zitat Dumesic JA, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania. J Catal 163(2):409–417CrossRef Dumesic JA, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania. J Catal 163(2):409–417CrossRef
133.
Zurück zum Zitat Castaldini C, Angwin M (1977) Boiler design and operating variables affecting uncontrolled sulfur emissions from pulverized-coal-fired steam generators. EPA-450/3-77-047. U.S. Environmental Protection Agency, Research Triangle Park Castaldini C, Angwin M (1977) Boiler design and operating variables affecting uncontrolled sulfur emissions from pulverized-coal-fired steam generators. EPA-450/3-77-047. U.S. Environmental Protection Agency, Research Triangle Park
134.
Zurück zum Zitat Folkedahl BC, Zygarlicke CJ (2004) Sulfur retention in North Dakota lignite coal ash. Preprints of the papers of the spring national meeting of the Division of Fuel Chemistry 49(1):167–168. American Chemical Society, Anaheim Folkedahl BC, Zygarlicke CJ (2004) Sulfur retention in North Dakota lignite coal ash. Preprints of the papers of the spring national meeting of the Division of Fuel Chemistry 49(1):167–168. American Chemical Society, Anaheim
135.
Zurück zum Zitat Srivastava RK (2000) Controlling SO2 emissions: a review of technologies. EPA/600/R-00/093. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC Srivastava RK (2000) Controlling SO2 emissions: a review of technologies. EPA/600/R-00/093. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC
136.
Zurück zum Zitat Kohl A, Riesenfeld F (1985) Gas purification, 4th edn. Gulf, Houston Kohl A, Riesenfeld F (1985) Gas purification, 4th edn. Gulf, Houston
137.
Zurück zum Zitat Weiler H, Ellison W (1997) Wet gypsum-yielding FGD experience using quicklime reagent. TR-108683-V2. Electric Power Research Institute, Palo Alto Weiler H, Ellison W (1997) Wet gypsum-yielding FGD experience using quicklime reagent. TR-108683-V2. Electric Power Research Institute, Palo Alto
138.
Zurück zum Zitat United Engineers and Constructors, Inc (1991) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 1. Electric Power Research Institute, Palo Alto United Engineers and Constructors, Inc (1991) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 1. Electric Power Research Institute, Palo Alto
139.
Zurück zum Zitat United Engineers and Constructors, Inc (1992) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 2. Electric Power Research Institute, Palo Alto United Engineers and Constructors, Inc (1992) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 2. Electric Power Research Institute, Palo Alto
140.
Zurück zum Zitat United Engineers and Constructors, Inc (1995) Economic evaluation of flue gas desulfurization systems. GS-7193-V3, vol 3. Electric Power Research Institute, Palo Alto United Engineers and Constructors, Inc (1995) Economic evaluation of flue gas desulfurization systems. GS-7193-V3, vol 3. Electric Power Research Institute, Palo Alto
141.
Zurück zum Zitat Fox MR, Hunt TG (1990) Flue gas desulfurization using dry sodium injection. Presented at the EPA/EPRI 1990 SO2 control symposium, New Orleans Fox MR, Hunt TG (1990) Flue gas desulfurization using dry sodium injection. Presented at the EPA/EPRI 1990 SO2 control symposium, New Orleans
142.
Zurück zum Zitat Zhou W, Maly P, Brooks J, Nareddy S, Swanson L, Moyeda D (2010) Design and test furnace sorbent injection for SO2 removal in a tangentially fired boiler. Environ Eng Sci 27(4):337–345. Mary Ann Liebert, New RochelleCrossRef Zhou W, Maly P, Brooks J, Nareddy S, Swanson L, Moyeda D (2010) Design and test furnace sorbent injection for SO2 removal in a tangentially fired boiler. Environ Eng Sci 27(4):337–345. Mary Ann Liebert, New RochelleCrossRef
143.
Zurück zum Zitat Stouffer M, Withum J, Rosenhoover W, Maskew J (1994) Advanced in-duct sorbent injection for SO2 control. Final technical report, DOE/PC/90360-49 Stouffer M, Withum J, Rosenhoover W, Maskew J (1994) Advanced in-duct sorbent injection for SO2 control. Final technical report, DOE/PC/90360-49
144.
Zurück zum Zitat Arif A, Stephen C, Branken D, Everson R, Neomagus H, Piketh S (2015) Modeling wet flue gas desulfurization. In: Conference of the National Association for Clean Air (NACA 2015), Bloemfontein, South Africa Arif A, Stephen C, Branken D, Everson R, Neomagus H, Piketh S (2015) Modeling wet flue gas desulfurization. In: Conference of the National Association for Clean Air (NACA 2015), Bloemfontein, South Africa
145.
Zurück zum Zitat Neveux T, le Moullec Y (2011) Wet industrial flue gas desulfurization unit: model development and validation on industrial data. Ind Eng Chem Res 50:7579–7592CrossRef Neveux T, le Moullec Y (2011) Wet industrial flue gas desulfurization unit: model development and validation on industrial data. Ind Eng Chem Res 50:7579–7592CrossRef
146.
Zurück zum Zitat Gómeza A, Fueyoa N, Tomás A (2007) Detailed modelling of a flue-gas desulfurisation plant. Comput Chem Eng 31(11):1419–1431CrossRef Gómeza A, Fueyoa N, Tomás A (2007) Detailed modelling of a flue-gas desulfurisation plant. Comput Chem Eng 31(11):1419–1431CrossRef
147.
Zurück zum Zitat Maroccoa L, Inzoli F (2009) Multiphase Euler–Lagrange CFD simulation applied to wet flue gas desulphurisation technology. Int J Multiphase Flow 35(2):185–194CrossRef Maroccoa L, Inzoli F (2009) Multiphase Euler–Lagrange CFD simulation applied to wet flue gas desulphurisation technology. Int J Multiphase Flow 35(2):185–194CrossRef
148.
Zurück zum Zitat Dou BL, Pan WG, Jin Q, Wang WH, Li Y (2009) Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Convers Manag 50:2547–2553CrossRef Dou BL, Pan WG, Jin Q, Wang WH, Li Y (2009) Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Convers Manag 50:2547–2553CrossRef
149.
Zurück zum Zitat Zhong Y, Gao X, Huo W, Luo ZY, Ni MJ, Cen KF (2008) A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Process Technol 89:1025–1032CrossRef Zhong Y, Gao X, Huo W, Luo ZY, Ni MJ, Cen KF (2008) A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Process Technol 89:1025–1032CrossRef
150.
Zurück zum Zitat Masters K (1985) Spray drying handbook, 4th edn. Wiley, New York Masters K (1985) Spray drying handbook, 4th edn. Wiley, New York
151.
Zurück zum Zitat Scala F, D'Ascenzo M, Lancia A (2004) Modeling flue gas desulfurization by spray-dry absorption. Sep Purif Technol 34(1–3):143–153CrossRef Scala F, D'Ascenzo M, Lancia A (2004) Modeling flue gas desulfurization by spray-dry absorption. Sep Purif Technol 34(1–3):143–153CrossRef
152.
Zurück zum Zitat Partridge GP, Davis WT, Counce RM, Reed GD (1990) A mechanistically based mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem Eng Commun 96:97–112CrossRef Partridge GP, Davis WT, Counce RM, Reed GD (1990) A mechanistically based mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem Eng Commun 96:97–112CrossRef
153.
Zurück zum Zitat Newton GH, Kramlich J, Payne R (1990) Modeling the SO2-slurry droplet reaction. AICHE J 36:1865–1872CrossRef Newton GH, Kramlich J, Payne R (1990) Modeling the SO2-slurry droplet reaction. AICHE J 36:1865–1872CrossRef
154.
Zurück zum Zitat Hill FF, Zank J (2000) Flue gas desulphurization by spray dry absorption. Chem Eng Process 39:45–52CrossRef Hill FF, Zank J (2000) Flue gas desulphurization by spray dry absorption. Chem Eng Process 39:45–52CrossRef
155.
Zurück zum Zitat Karlsson HT, Klingspor J (1987) Tentative modelling of spray-dry scrubbing of SO2. Chem Eng Technol 10:104–112CrossRef Karlsson HT, Klingspor J (1987) Tentative modelling of spray-dry scrubbing of SO2. Chem Eng Technol 10:104–112CrossRef
156.
Zurück zum Zitat Dantuluri SR, Davis WT, Counce RM, Reed GD (1990) Mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Sep Sci Technol 25:1843–1855CrossRef Dantuluri SR, Davis WT, Counce RM, Reed GD (1990) Mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Sep Sci Technol 25:1843–1855CrossRef
157.
Zurück zum Zitat Ramachandran PA, Sharma MM (1969) Absorption with fast reaction in a slurry containing sparingly soluble fine particles. Chem Eng Sci 24:1681–1686CrossRef Ramachandran PA, Sharma MM (1969) Absorption with fast reaction in a slurry containing sparingly soluble fine particles. Chem Eng Sci 24:1681–1686CrossRef
158.
Zurück zum Zitat Scala F, D’Ascenzo M (2002) Absorption with instantaneous reaction in a droplet with sparingly soluble fines. AICHE J 48:1719–1726CrossRef Scala F, D’Ascenzo M (2002) Absorption with instantaneous reaction in a droplet with sparingly soluble fines. AICHE J 48:1719–1726CrossRef
159.
Zurück zum Zitat Marocco L, Mora A (2013) CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime. Sep Purif Technol 108:205–214CrossRef Marocco L, Mora A (2013) CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime. Sep Purif Technol 108:205–214CrossRef
160.
Zurück zum Zitat Schantz M, Sewell M (2013) The growth of dry sorbent injection (DSI) and the impact on coal combustion residue. In: 2013 World of Coal Ash (WOCA) conference, Center for Applied Energy Research, Lexington, KY Schantz M, Sewell M (2013) The growth of dry sorbent injection (DSI) and the impact on coal combustion residue. In: 2013 World of Coal Ash (WOCA) conference, Center for Applied Energy Research, Lexington, KY
161.
Zurück zum Zitat Muziak J (2005) Successful mitigation of SO3 by dry sorbent injection of trona upstream of the ESP. 2005 EPA/DOE/EPRI mega symposium, Air and Waste Management Association, Pittsburgh, PA Muziak J (2005) Successful mitigation of SO3 by dry sorbent injection of trona upstream of the ESP. 2005 EPA/DOE/EPRI mega symposium, Air and Waste Management Association, Pittsburgh, PA
162.
Zurück zum Zitat (2016) Dry sorbent injection for acid gas control: process chemistry, waste disposal and plant operational impacts. White paper, Institute of Clean Air Companies. Arlington (2016) Dry sorbent injection for acid gas control: process chemistry, waste disposal and plant operational impacts. White paper, Institute of Clean Air Companies. Arlington
163.
Zurück zum Zitat Shi L, Liu G, Higgins BS, Benson L (2011) Computational modeling of furnace sorbent injection for SO2 removal from coal-fired utility boilers. Fuel Process Technol 92(3):372–378CrossRef Shi L, Liu G, Higgins BS, Benson L (2011) Computational modeling of furnace sorbent injection for SO2 removal from coal-fired utility boilers. Fuel Process Technol 92(3):372–378CrossRef
164.
Zurück zum Zitat Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manag Assoc 54:750–762. Air and Waste Management Association, PittsburghCrossRef Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manag Assoc 54:750–762. Air and Waste Management Association, PittsburghCrossRef
165.
Zurück zum Zitat Blythe G, Dombrowski K (2004) SO3 mitigation guide update. Report no. 1004168. Electric Power Research Institute, Palo Alto Blythe G, Dombrowski K (2004) SO3 mitigation guide update. Report no. 1004168. Electric Power Research Institute, Palo Alto
166.
Zurück zum Zitat Walsh PM, McCain JD, Cushing KM (2006) Evaluation and mitigation of visible acidic aerosol plumes from coal fired power boilers. EPA/600/R-06/156 Walsh PM, McCain JD, Cushing KM (2006) Evaluation and mitigation of visible acidic aerosol plumes from coal fired power boilers. EPA/600/R-06/156
167.
Zurück zum Zitat Senior C, Fry A, Montgomery C, Sarofim A, Wendt J (2006) Modeling tool for evaluation of utility mercury control strategies. Paper #23, DOE-EPRI-EPA-A&WMA Power plant air pollutant control “mega” symposium, Washington, DC Senior C, Fry A, Montgomery C, Sarofim A, Wendt J (2006) Modeling tool for evaluation of utility mercury control strategies. Paper #23, DOE-EPRI-EPA-A&WMA Power plant air pollutant control “mega” symposium, Washington, DC
168.
Zurück zum Zitat Senior CL, Sarofim AF, Zeng T, Helble JJ, Mamani-Paco R (2000) Gas-phase transformations of mercury in coal-fired power plants. Fuel Process Technol 63(2–3):197–213CrossRef Senior CL, Sarofim AF, Zeng T, Helble JJ, Mamani-Paco R (2000) Gas-phase transformations of mercury in coal-fired power plants. Fuel Process Technol 63(2–3):197–213CrossRef
169.
Zurück zum Zitat (2004) Control of mercury emissions from coal-fired electric utility boilers. Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park (2004) Control of mercury emissions from coal-fired electric utility boilers. Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park
170.
Zurück zum Zitat (2014) Mercury emissions capture efficiency with activated carbon injection at a Russian coal-fired thermal power plant. Scientific report, EPA600/R-14/29, US EPA, Washington, DC (2014) Mercury emissions capture efficiency with activated carbon injection at a Russian coal-fired thermal power plant. Scientific report, EPA600/R-14/29, US EPA, Washington, DC
171.
Zurück zum Zitat Afonso RF, Senior CL (2001) Assessment of mercury emissions from full scale power plants. Paper presented at the EPRI-EPA-DOE-AWMA mega symposium and mercury conference, Chicago, AWMA, Washington, DC Afonso RF, Senior CL (2001) Assessment of mercury emissions from full scale power plants. Paper presented at the EPRI-EPA-DOE-AWMA mega symposium and mercury conference, Chicago, AWMA, Washington, DC
172.
Zurück zum Zitat Kilgroe JD, Sedman CB, Srivastava RK, Ryan JV, Lee CW, Thornloe SA (2002) Control of mercury emissions from coal-fired electric utility boilers: interim report. EPA –600/R-01-109. National Risk Management Laboratory, US EPA, Research Triangle Park, NC Kilgroe JD, Sedman CB, Srivastava RK, Ryan JV, Lee CW, Thornloe SA (2002) Control of mercury emissions from coal-fired electric utility boilers: interim report. EPA –600/R-01-109. National Risk Management Laboratory, US EPA, Research Triangle Park, NC
173.
Zurück zum Zitat Laudal D (2002) Effect of selective catalytic reduction on mercury. 2002 field studies update, EPRI, Palo Alto. Product ID 1005558. Laudal D (2002) Effect of selective catalytic reduction on mercury. 2002 field studies update, EPRI, Palo Alto. Product ID 1005558.
174.
Zurück zum Zitat Chu P, Laudal D, Brickett L, Lee CW (2003) Power plant evaluation of the effect of SCR technology on mercury. Presented at the DOE-EPRI-U.S. EPA -A&WMA combined power plant air pollutant control symposium – The mega symposium, Washington, DC Chu P, Laudal D, Brickett L, Lee CW (2003) Power plant evaluation of the effect of SCR technology on mercury. Presented at the DOE-EPRI-U.S. EPA -A&WMA combined power plant air pollutant control symposium – The mega symposium, Washington, DC
175.
Zurück zum Zitat La Marca C, Cioni M, Pintus N, Rossi N, Malloggi S, Barbieri A (2003) Macro and micro-pollutant emission reduction in coal-fired power plant. In: Presented at 7th international conference on energy for a clean environment (Clean Air 2003), Lisbon La Marca C, Cioni M, Pintus N, Rossi N, Malloggi S, Barbieri A (2003) Macro and micro-pollutant emission reduction in coal-fired power plant. In: Presented at 7th international conference on energy for a clean environment (Clean Air 2003), Lisbon
176.
Zurück zum Zitat Gutberlet H, Schlüter A, Licata A (2000) SCR impacts on mercury emissions from coal-fired boilers. Presented at EPRI SCR workshop, memphis Gutberlet H, Schlüter A, Licata A (2000) SCR impacts on mercury emissions from coal-fired boilers. Presented at EPRI SCR workshop, memphis
177.
Zurück zum Zitat Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89(6):1320–1322CrossRef Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89(6):1320–1322CrossRef
178.
Zurück zum Zitat Looney B, Meeks N, Cecil J, Huston R, Wong J, Johnson E (2013) Advanced activated carbons for efficient solutions. Presented at EUEC presentation Looney B, Meeks N, Cecil J, Huston R, Wong J, Johnson E (2013) Advanced activated carbons for efficient solutions. Presented at EUEC presentation
179.
Zurück zum Zitat Cremer M, Senior C, Chiodo A, Wang D, Valentine J (2004) CFD modeling of activated carbon injection for mercury control in coal fired power plants. In: Joint EPRI DOE EPA combined utility air pollution control symposium, the mega symposium, AWMA, Washington, DC Cremer M, Senior C, Chiodo A, Wang D, Valentine J (2004) CFD modeling of activated carbon injection for mercury control in coal fired power plants. In: Joint EPRI DOE EPA combined utility air pollution control symposium, the mega symposium, AWMA, Washington, DC
180.
Zurück zum Zitat Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES (2010) Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energy Combust Sci 36(4):510–529CrossRef Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES (2010) Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energy Combust Sci 36(4):510–529CrossRef
181.
Zurück zum Zitat Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon 47(12):2855–2864CrossRef Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon 47(12):2855–2864CrossRef
182.
Zurück zum Zitat Wilcox J, Rupp E, Ying SC, Lim DH, Suarez Negreira A, Kirchofer A, Feng F, Lee K (2012) Mercury adsorption and oxidation in coal combustion and gasification processes. Int J Coal Geol 90–91:4–20CrossRef Wilcox J, Rupp E, Ying SC, Lim DH, Suarez Negreira A, Kirchofer A, Feng F, Lee K (2012) Mercury adsorption and oxidation in coal combustion and gasification processes. Int J Coal Geol 90–91:4–20CrossRef
183.
Zurück zum Zitat Niksa S, Helble JJ, Fujiwara N (2001) Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environ Sci Technol 35(18):3701–3706CrossRef Niksa S, Helble JJ, Fujiwara N (2001) Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environ Sci Technol 35(18):3701–3706CrossRef
184.
Zurück zum Zitat Qiu J, Sterling RO, Helble JJ (2003) In development of an improved model for determining the effects of SO2 on homogeneous mercury oxidation. In: 28th international technical conference on coal utilization & fuel systems, Clearwater Qiu J, Sterling RO, Helble JJ (2003) In development of an improved model for determining the effects of SO2 on homogeneous mercury oxidation. In: 28th international technical conference on coal utilization & fuel systems, Clearwater
185.
Zurück zum Zitat Senior CL, Sadler B, Sarofim AF (2005) Modeling mercury behavior in practical combustion systems. In: 229th American Chemical Society National Meeting, San Diego Senior CL, Sadler B, Sarofim AF (2005) Modeling mercury behavior in practical combustion systems. In: 229th American Chemical Society National Meeting, San Diego
186.
Zurück zum Zitat Senior CL (2006) Oxidation of mercury across SCR catalysts in coal-fired power plants. J Air Waste Manag Assoc 56:23–31CrossRef Senior CL (2006) Oxidation of mercury across SCR catalysts in coal-fired power plants. J Air Waste Manag Assoc 56:23–31CrossRef
187.
Zurück zum Zitat Understanding mercury chemistry via the reaction engineering international (REI) ProMerc™ model. EPRI report 1014893 Understanding mercury chemistry via the reaction engineering international (REI) ProMerc™ model. EPRI report 1014893
188.
Zurück zum Zitat Adams B, Van Otten B (2014) Evaluation of mercury control strategies in the presence of SO3. Paper #18, power plant pollutant control “mega” symposium, Baltimore Adams B, Van Otten B (2014) Evaluation of mercury control strategies in the presence of SO3. Paper #18, power plant pollutant control “mega” symposium, Baltimore
189.
Zurück zum Zitat Ciferno JD, Fout TE, Jones AP, Murphy JT (2009) Capture carbon from existing coal-fired power plants, chemical engineering progress. American Institute of Chemical Engineers, New York, pp 33–41 Ciferno JD, Fout TE, Jones AP, Murphy JT (2009) Capture carbon from existing coal-fired power plants, chemical engineering progress. American Institute of Chemical Engineers, New York, pp 33–41
Metadaten
Titel
Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation
verfasst von
Bradley R. Adams
Copyright-Jahr
2020
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9763-3_959