Skip to main content
Erschienen in: Meccanica 8/2015

01.08.2015

Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects

verfasst von: N. F. M. Noor, Rizwan Ul Haq, S. Nadeem, I. Hashim

Erschienen in: Meccanica | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mixed convection boundary layer flow of a micropolar nanofluid near a stagnation point along a vertical stretching sheet is investigated. The transformed nonlinear system of ordinary differential equations are solved using the shooting technique with Runge-Kutta Fehlberg method. Comparisons between present and previous results in the absence of nanofluid are tabulated. Several flow velocity, temperature and nanoparticle volume fraction profiles are visualized. The graphical variations of the reduced skin friction coefficient, the reduced Nusselt number and the reduced Sherwood number of both assisting and opposing flows are also presented. The effects of material parameter and microrotation on the Nusselt number are similar with the findings of other researchers. The presence of slip velocity between the base fluid and the nanoparticles has significant impact on the heat transfer enhancement of the stagnation flow of micropolar nanofluid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Int Mech Eng Cong Exp, ASME, FED 231/MD 66:99–105MATH Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Int Mech Eng Cong Exp, ASME, FED 231/MD 66:99–105MATH
2.
Zurück zum Zitat Kavitha T, Rajendran A, Durairajan A, Shanmugam A (2012) Heat transfer enhancement using nano fluids and innovative methods—an overview. Int J Mech Eng Tech 3:769–782 Kavitha T, Rajendran A, Durairajan A, Shanmugam A (2012) Heat transfer enhancement using nano fluids and innovative methods—an overview. Int J Mech Eng Tech 3:769–782
3.
Zurück zum Zitat Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon Press, Oxford UK Maxwell JC (1881) A treatise on electricity and magnetism. Clarendon Press, Oxford UK
4.
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250CrossRef
5.
Zurück zum Zitat Noghrehabadi A, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Thermal Sci 54:253–261CrossRef Noghrehabadi A, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Thermal Sci 54:253–261CrossRef
6.
Zurück zum Zitat Rahman MM, Al-Lawatia MA, Eltayeb IA, Al-Salti N (2012) Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. Int J Thermal Sci 57:172–182CrossRef Rahman MM, Al-Lawatia MA, Eltayeb IA, Al-Salti N (2012) Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. Int J Thermal Sci 57:172–182CrossRef
7.
Zurück zum Zitat Das K (2012) Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput Fluids 64:34–42MathSciNetCrossRef Das K (2012) Slip flow and convective heat transfer of nanofluids over a permeable stretching surface. Comput Fluids 64:34–42MathSciNetCrossRef
8.
Zurück zum Zitat Ibrahim W, Shankar B (2013) MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput Fluids 75:1–10MathSciNetCrossRefMATH Ibrahim W, Shankar B (2013) MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput Fluids 75:1–10MathSciNetCrossRefMATH
9.
Zurück zum Zitat Zheng L, Zhang C, Zhang X, Zhang J (2013) Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J Franklin Inst 350:990–1007MathSciNetCrossRefMATH Zheng L, Zhang C, Zhang X, Zhang J (2013) Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J Franklin Inst 350:990–1007MathSciNetCrossRefMATH
10.
Zurück zum Zitat Ibrahim W, Shankar B, Nandeppanavar MM (2013) MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56:1–9CrossRef Ibrahim W, Shankar B, Nandeppanavar MM (2013) MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf 56:1–9CrossRef
11.
Zurück zum Zitat Hamad MAA, Ferdows M (2012) Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis. Commun Nonlin Sc Numer Simulat 17:132–140MathSciNetCrossRefMATH Hamad MAA, Ferdows M (2012) Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis. Commun Nonlin Sc Numer Simulat 17:132–140MathSciNetCrossRefMATH
12.
Zurück zum Zitat Bachok N, Ishak A, Pop I (2012) The boundary layers of an unsteady stagnation-point flow in a nanofluid. Int J Heat Mass Transf 55:6499–6505CrossRef Bachok N, Ishak A, Pop I (2012) The boundary layers of an unsteady stagnation-point flow in a nanofluid. Int J Heat Mass Transf 55:6499–6505CrossRef
13.
Zurück zum Zitat Nadeem S, Mehmood R, Akbar NS (2013) Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. Int J Heat Mass Transf 57:679–689CrossRef Nadeem S, Mehmood R, Akbar NS (2013) Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. Int J Heat Mass Transf 57:679–689CrossRef
14.
Zurück zum Zitat Bourantas GC, Loukopoulos VC (2014) Modelling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf 68:35–41CrossRef Bourantas GC, Loukopoulos VC (2014) Modelling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf 68:35–41CrossRef
15.
Zurück zum Zitat Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys 46:3408–3425ADSCrossRef Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys 46:3408–3425ADSCrossRef
16.
17.
Zurück zum Zitat Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica 41:509–518CrossRef Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica 41:509–518CrossRef
18.
Zurück zum Zitat Rees DAS, Pop I (1998) Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. IMA J Appl Math 61:179–197MathSciNetCrossRefMATH Rees DAS, Pop I (1998) Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. IMA J Appl Math 61:179–197MathSciNetCrossRefMATH
19.
Zurück zum Zitat Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH
20.
Zurück zum Zitat Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521ADSCrossRef Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521ADSCrossRef
21.
Zurück zum Zitat Nazar R, Amin N, Filip D, Pop I (2004) Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int J Eng Sci 42:1241–1253MathSciNetCrossRefMATH Nazar R, Amin N, Filip D, Pop I (2004) Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int J Eng Sci 42:1241–1253MathSciNetCrossRefMATH
22.
Zurück zum Zitat Zadravec M, Hriberŝek M, Ŝkerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal with Bound Elem 33:485–492 Zadravec M, Hriberŝek M, Ŝkerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal with Bound Elem 33:485–492
Metadaten
Titel
Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects
verfasst von
N. F. M. Noor
Rizwan Ul Haq
S. Nadeem
I. Hashim
Publikationsdatum
01.08.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 8/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0145-9

Weitere Artikel der Ausgabe 8/2015

Meccanica 8/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.