Skip to main content
Erschienen in: Hydrogeology Journal 4/2013

01.06.2013 | Report

Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): hydrology and geochemistry

verfasst von: Matthew L. Gibson, Nancy W. Hinman

Erschienen in: Hydrogeology Journal | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Studies of hot springs have focused mainly on the properties of fluids and solids. Fewer studies focus on the relationship between the hot springs and groundwater/surface-water environments. The differences in temperature and dissolved solids between hot-spring water and typical surface water and groundwater allow interactions to be traced. Electromagnetic terrain (EMT) conductivity is a nonintrusive technique capable of mapping mixing zones between distinct subsurface waters. These interactions include zones of groundwater/surface-water exchange and groundwater mixing. Herein, hydrogeological techniques are compared with EMT conductivity to trace hot-spring discharge interactions with shallow groundwater and surface water. Potentiometric-surface and water-quality data determined the hydrogeochemistry of two thermally influenced areas in Yellowstone National Park, Wyoming (USA). Data from the sites revealed EMT conductivity contrasts that reflected the infiltration of conductive hot-spring discharge to local groundwater systems. The anomalies reflect higher temperatures and conductivity for Na+–Cl-rich hydrothermal fluids compared to the receiving groundwater. EMT conductivity results suggested hot springs are fed by conduits largely isolated from shallow groundwater; mixing of waters occurs after hot-spring discharge infiltrates groundwater from the surface and, generally, not by leakage in the subsurface. A model was proposed to explain the growth of sinter mounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anterrieu O, Chouteau M, Aubertin M (2010) Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bull Eng Geol Environ 69:533–548. doi:10.1007/s10064-010-0264-4 CrossRef Anterrieu O, Chouteau M, Aubertin M (2010) Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bull Eng Geol Environ 69:533–548. doi:10.​1007/​s10064-010-0264-4 CrossRef
Zurück zum Zitat Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–61 Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–61
Zurück zum Zitat Bessonova EP et al (2012) Geochemical and geo-electrical study of mud pools at the Mutnovsky volcano (South Kamchatka, Russia): behavior of elements, structures of feeding channels and a model of origin. Appl Geochem 27:1829–1843. doi:10.1016/j.apgeochem.2012.02.018 CrossRef Bessonova EP et al (2012) Geochemical and geo-electrical study of mud pools at the Mutnovsky volcano (South Kamchatka, Russia): behavior of elements, structures of feeding channels and a model of origin. Appl Geochem 27:1829–1843. doi:10.​1016/​j.​apgeochem.​2012.​02.​018 CrossRef
Zurück zum Zitat Brooks GA, Olyphant GA, Harper D (1991) Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, USA. Environ Geol Water Sci 18:39–47. doi:10.1007/bf01704576 CrossRef Brooks GA, Olyphant GA, Harper D (1991) Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, USA. Environ Geol Water Sci 18:39–47. doi:10.​1007/​bf01704576 CrossRef
Zurück zum Zitat Campbell KA, Buddle TF, Browne PRL (2004) Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand. Trans R Soc Edinb-Earth Sci 94:485–501 Campbell KA, Buddle TF, Browne PRL (2004) Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand. Trans R Soc Edinb-Earth Sci 94:485–501
Zurück zum Zitat Channing A, Edwards D, Sturtevant S (2004) A geothermally influenced wetland containing unconsolidated geochemical sediments. Can J Earth Sci 41:809–827. doi:10.1139/e04-034 CrossRef Channing A, Edwards D, Sturtevant S (2004) A geothermally influenced wetland containing unconsolidated geochemical sediments. Can J Earth Sci 41:809–827. doi:10.​1139/​e04-034 CrossRef
Zurück zum Zitat Christiansen R (2001) The quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. US Geol Surv Prof Pap 729 G:145 Christiansen R (2001) The quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. US Geol Surv Prof Pap 729 G:145
Zurück zum Zitat Fetter CW, Fetter CW (2001) Applied hydrogeology. Prentice Hall, Englewood Cliffs, NJ Fetter CW, Fetter CW (2001) Applied hydrogeology. Prentice Hall, Englewood Cliffs, NJ
Zurück zum Zitat Fournier RO (1976) The solubility of amorphous silica at high temperatures and high pressures. Conf. Scale Management in Geothermal Energy Development, San Diego, CA, August 2–4, 1976, pp 19–23 Fournier RO (1976) The solubility of amorphous silica at high temperatures and high pressures. Conf. Scale Management in Geothermal Energy Development, San Diego, CA, August 2–4, 1976, pp 19–23
Zurück zum Zitat Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:13–53CrossRef Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:13–53CrossRef
Zurück zum Zitat Gibson M (1999) Hydrothermal water/groundwater interaction: a comparative study of electromagnetic terrain-conductivity mapping and standard hydrogeochemical techniques. MSc Thesis, University of Montana, USA, 153 pp Gibson M (1999) Hydrothermal water/groundwater interaction: a comparative study of electromagnetic terrain-conductivity mapping and standard hydrogeochemical techniques. MSc Thesis, University of Montana, USA, 153 pp
Zurück zum Zitat Hinman NW, Esser JD (2010) Chemical factors driving stream “armor” in Iron Spring Creek, Yellowstone National Park, WY. In: Alvarado IT, Birkle P (eds) Water–rock interaction 13. Balkema, Guanajuato, Mexico Hinman NW, Esser JD (2010) Chemical factors driving stream “armor” in Iron Spring Creek, Yellowstone National Park, WY. In: Alvarado IT, Birkle P (eds) Water–rock interaction 13. Balkema, Guanajuato, Mexico
Zurück zum Zitat Kundu N, Panigrahi MK, Sharma SP, Tripathy S (2002) Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies. Environ Geol 43:228–235. doi:10.1007/s00254-002-0651-7 CrossRef Kundu N, Panigrahi MK, Sharma SP, Tripathy S (2002) Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies. Environ Geol 43:228–235. doi:10.​1007/​s00254-002-0651-7 CrossRef
Zurück zum Zitat Mack TL, Maus PE (1986) Detection of contaminant plumes in ground water of Long Island, New York, by electromagnetic terrain-conductivity surveys. US Geol Surv Water Resour Invest Rep 86–4045, 39 pp Mack TL, Maus PE (1986) Detection of contaminant plumes in ground water of Long Island, New York, by electromagnetic terrain-conductivity surveys. US Geol Surv Water Resour Invest Rep 86–4045, 39 pp
Zurück zum Zitat Rantz SE (1982) Measurement and computation of streamflow: volume 1, measurement of stage and discharge. US Geol Surv Water Suppl Pap 2175, 284 pp Rantz SE (1982) Measurement and computation of streamflow: volume 1, measurement of stage and discharge. US Geol Surv Water Suppl Pap 2175, 284 pp
Zurück zum Zitat Richmond G (1964) Glacial geology of the west Yellowstone basin and adjacent parts of Yellowstone National Park: the Hebgen Lake, Montana, earthquake of August 17, 1959. US Geol Surv Prof Pap 435:223–236 Richmond G (1964) Glacial geology of the west Yellowstone basin and adjacent parts of Yellowstone National Park: the Hebgen Lake, Montana, earthquake of August 17, 1959. US Geol Surv Prof Pap 435:223–236
Zurück zum Zitat Stauffer RE, Jenne EA, Ball JW (1980) Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park. US Geol Surv Water Suppl Pap 1044 F, 23 pp Stauffer RE, Jenne EA, Ball JW (1980) Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park. US Geol Surv Water Suppl Pap 1044 F, 23 pp
Zurück zum Zitat Vitale MV, Gardner P, Hinman NW (2008) Surface water–groundwater interaction and chemistry in a mineral-armored hydrothermal outflow channel, Yellowstone National Park, USA. Hydrogeol J 16:1381–1393. doi:10.1007/s10040-008-0344-8 CrossRef Vitale MV, Gardner P, Hinman NW (2008) Surface water–groundwater interaction and chemistry in a mineral-armored hydrothermal outflow channel, Yellowstone National Park, USA. Hydrogeol J 16:1381–1393. doi:10.​1007/​s10040-008-0344-8 CrossRef
Zurück zum Zitat Walter MR (1976) Hot-springs sediments in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 489–498CrossRef Walter MR (1976) Hot-springs sediments in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 489–498CrossRef
Zurück zum Zitat Weed WH (1889) Diatom marshes and diatom beds of the Yellowstone National Park. Botan J 14:117–120 Weed WH (1889) Diatom marshes and diatom beds of the Yellowstone National Park. Botan J 14:117–120
Metadaten
Titel
Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): hydrology and geochemistry
verfasst von
Matthew L. Gibson
Nancy W. Hinman
Publikationsdatum
01.06.2013
Verlag
Springer-Verlag
Erschienen in
Hydrogeology Journal / Ausgabe 4/2013
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-013-0965-4

Weitere Artikel der Ausgabe 4/2013

Hydrogeology Journal 4/2013 Zur Ausgabe