Skip to main content
Erschienen in: Wireless Networks 2/2019

30.08.2017

MMSE-based-filter and artificial noise design for MIMO–OFDM systems

verfasst von: Ming Li, Wenfei Liu, Xiaowen Tian, Zihuan Wang, Qian Liu

Erschienen in: Wireless Networks | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical layer security is a crucial issue in wireless networks to prevent legitimate communication from eavesdropping. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a minimum mean square error (MMSE)-based-filter secure MIMO–OFDM system which can destroy the orthogonality of eavesdropper’s signals. The MMSE-based-filter is used at the receiver to suppress the inter-subcarrier interference and disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Next, we propose another artificial noise (AN)-assisted secure MIMO–OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to be canceled out at the legitimate receiver. Therefore, AN will disturb the reception of eavesdropper while the legitimate transmission will not be affected. Finally, power allocation for AN signals and subcarriers will be discussed since AN is generated utilizing the residual power of the MIMO–OFDM system. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO–OFDM system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shiu, Y. S., Chang, S. Y., & Wu, H. C. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.CrossRef Shiu, Y. S., Chang, S. Y., & Wu, H. C. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.CrossRef
2.
Zurück zum Zitat Mukherjee, A., Fakoorian, S. A. A., Huang, J., et al. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRef Mukherjee, A., Fakoorian, S. A. A., Huang, J., et al. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRef
4.
Zurück zum Zitat Cheong, S. L. Y., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.MathSciNetCrossRefMATH Cheong, S. L. Y., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.MathSciNetCrossRefMATH
5.
Zurück zum Zitat Mei, W., Chen, Z., & Fang, J. (2016). Secrecy capacity region maximization in Gaussian MISO channels with integrated services. IEEE Signal Processing Letters, 23(8), 1146–1150. Mei, W., Chen, Z., & Fang, J. (2016). Secrecy capacity region maximization in Gaussian MISO channels with integrated services. IEEE Signal Processing Letters, 23(8), 1146–1150.
6.
Zurück zum Zitat Jeon, H., Kim, N., Choi, J., et al. (2010). Bounds on secrecy capacity over correlated ergodic fading channels at high SNR. IEEE Transactions on Information Theory, 57(4), 1975–1982.MathSciNetCrossRefMATH Jeon, H., Kim, N., Choi, J., et al. (2010). Bounds on secrecy capacity over correlated ergodic fading channels at high SNR. IEEE Transactions on Information Theory, 57(4), 1975–1982.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Zhou, X., & McKay, M. R. (2010). Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology, 59(8), 3831–3842.CrossRef Zhou, X., & McKay, M. R. (2010). Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology, 59(8), 3831–3842.CrossRef
8.
Zurück zum Zitat Salehkalaibar, S., & Aref, M. R. (2014). Physical layer security for some classes of three-receiver broadcast channels. IET Communications, 8(11), 1965–1976.CrossRef Salehkalaibar, S., & Aref, M. R. (2014). Physical layer security for some classes of three-receiver broadcast channels. IET Communications, 8(11), 1965–1976.CrossRef
9.
Zurück zum Zitat Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefMATH
10.
Zurück zum Zitat Hamid, U., Qamar, R. A., & Waqas, K. (2014). Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing. In International Bhurban conference on applied science and technology. Hamid, U., Qamar, R. A., & Waqas, K. (2014). Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing. In International Bhurban conference on applied science and technology.
11.
Zurück zum Zitat Chen, Y., Hu, X., & Tan, Z. (2011). Power allocation for OFDM-DF cooperative communication. In 2011 Third international conference on communications and mobile computing. Chen, Y., Hu, X., & Tan, Z. (2011). Power allocation for OFDM-DF cooperative communication. In 2011 Third international conference on communications and mobile computing.
12.
Zurück zum Zitat Amankwa, E., Loock, M., Kritzinger, E. (2014). A conceptual analysis of information security education, information security training and information security awareness definitions. In 2014 9th international conference for internet technology and secured transactions (ICITST). Amankwa, E., Loock, M., Kritzinger, E. (2014). A conceptual analysis of information security education, information security training and information security awareness definitions. In 2014 9th international conference for internet technology and secured transactions (ICITST).
13.
Zurück zum Zitat Wang, Z., Li, L., & Wang, H. (2016). Beamforming design in relay-based full-duplex MISO wireless powered communication networks. IEEE Communication Letters, 20(10), 2047–2050.CrossRef Wang, Z., Li, L., & Wang, H. (2016). Beamforming design in relay-based full-duplex MISO wireless powered communication networks. IEEE Communication Letters, 20(10), 2047–2050.CrossRef
14.
Zurück zum Zitat Wang, H. M., Wang, C., & Ng, D. W. K. (2015). Artificial noise assisted secure transmission under training and feedback. IEEE Transactions on Signal Processing, 63(23), 6285–6298.MathSciNetCrossRefMATH Wang, H. M., Wang, C., & Ng, D. W. K. (2015). Artificial noise assisted secure transmission under training and feedback. IEEE Transactions on Signal Processing, 63(23), 6285–6298.MathSciNetCrossRefMATH
15.
Zurück zum Zitat Lin, P. H., Lai, S. H., Lin, S. C., et al. (2013). On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE Journal on Selected Areas in Communications, 31(9), 1728–1740.CrossRef Lin, P. H., Lai, S. H., Lin, S. C., et al. (2013). On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE Journal on Selected Areas in Communications, 31(9), 1728–1740.CrossRef
16.
Zurück zum Zitat Liao, W. C., Chang, T. H., Ma, W. K., et al. (2011). QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-assisted approach. IEEE Transactions on Signal Processing, 59(3), 1202–1216.MathSciNetCrossRefMATH Liao, W. C., Chang, T. H., Ma, W. K., et al. (2011). QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-assisted approach. IEEE Transactions on Signal Processing, 59(3), 1202–1216.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Zhu, J., Schober, R., & Bhargava, V. K. (2016). Linear precoding of data and artificial noise in secure massive MIMO systems. IEEE Transactions on Wireless Communications, 15(3), 2245–2261.CrossRef Zhu, J., Schober, R., & Bhargava, V. K. (2016). Linear precoding of data and artificial noise in secure massive MIMO systems. IEEE Transactions on Wireless Communications, 15(3), 2245–2261.CrossRef
18.
Zurück zum Zitat Zheng, T. X., & Wang, H. M. (2016). Optimal power allocation for artificial noise under imperfect CSI against spatially random eavesdroppers. IEEE Transactions on Vehicular Technology, 65(10), 8812–8817.CrossRef Zheng, T. X., & Wang, H. M. (2016). Optimal power allocation for artificial noise under imperfect CSI against spatially random eavesdroppers. IEEE Transactions on Vehicular Technology, 65(10), 8812–8817.CrossRef
19.
Zurück zum Zitat Zheng, T. X., Wang, H. M., Yuan, J., et al. (2015). Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Transactions on Communications, 63(11), 4347–4362.CrossRef Zheng, T. X., Wang, H. M., Yuan, J., et al. (2015). Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Transactions on Communications, 63(11), 4347–4362.CrossRef
20.
Zurück zum Zitat Wang, H. M., Wang, C., Zheng, T. X., et al. (2016). Impact of artificial noise on cellular networks: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 15(11), 7390–7404.CrossRef Wang, H. M., Wang, C., Zheng, T. X., et al. (2016). Impact of artificial noise on cellular networks: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 15(11), 7390–7404.CrossRef
21.
Zurück zum Zitat Wang, H. M., Wang, C., Ng, D. W. K., et al. (2016). Artificial noise assisted secure transmission for distributed antenna systems. IEEE Transactions on Signal Processing, 64(15), 4050–4064.MathSciNetCrossRef Wang, H. M., Wang, C., Ng, D. W. K., et al. (2016). Artificial noise assisted secure transmission for distributed antenna systems. IEEE Transactions on Signal Processing, 64(15), 4050–4064.MathSciNetCrossRef
22.
Zurück zum Zitat Lin, W. J., & Yen, J. C. (2009). An integrating channel coding and cryptography design for OFDM based WLANs. In IEEE international symposium on consumer electronics. Lin, W. J., & Yen, J. C. (2009). An integrating channel coding and cryptography design for OFDM based WLANs. In IEEE international symposium on consumer electronics.
23.
Zurück zum Zitat Taha, H., Alsusa, E. (2015). A MIMO precoding based physical layer security technique for key exchange encryption. In Proceedings of IEEE vehicular technology conference. Taha, H., Alsusa, E. (2015). A MIMO precoding based physical layer security technique for key exchange encryption. In Proceedings of IEEE vehicular technology conference.
24.
Zurück zum Zitat Cao, P., Hu, X., & Wu, J. (2014). Physical layer encryption in OFDM-PON employing time-variable keys from ONUs. IEEE Photonics Journal, 6(2), 1–7.CrossRef Cao, P., Hu, X., & Wu, J. (2014). Physical layer encryption in OFDM-PON employing time-variable keys from ONUs. IEEE Photonics Journal, 6(2), 1–7.CrossRef
25.
Zurück zum Zitat Qin, H., Sun, Y., Chang, T. H., et al. (2013). Power allocation and time-domain artificial noise design for wiretap OFDM with discrete inputs. IEEE Transactions on Wireless Communications, 12(6), 2717–2729.CrossRef Qin, H., Sun, Y., Chang, T. H., et al. (2013). Power allocation and time-domain artificial noise design for wiretap OFDM with discrete inputs. IEEE Transactions on Wireless Communications, 12(6), 2717–2729.CrossRef
26.
Zurück zum Zitat Chopra, R., Murthy, C. R., & Suraweera, H. A. (2016). On the throughput of large MIMO beamforming systems with channel aging. IEEE Transactions on Signal Processing Letters, 23(11), 1523–1527.CrossRef Chopra, R., Murthy, C. R., & Suraweera, H. A. (2016). On the throughput of large MIMO beamforming systems with channel aging. IEEE Transactions on Signal Processing Letters, 23(11), 1523–1527.CrossRef
27.
Zurück zum Zitat Mukherjee, A., & Swindlehurst, A. L. (2011). Robust beamforming for secrecy in MIMO wiretap channels with imperfect CSI. IEEE Transactions on Signal Processing, 59(1), 351–361.MathSciNetCrossRefMATH Mukherjee, A., & Swindlehurst, A. L. (2011). Robust beamforming for secrecy in MIMO wiretap channels with imperfect CSI. IEEE Transactions on Signal Processing, 59(1), 351–361.MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wang, H. M., Yin, Q., & Xia, X. G. (2012). Distributed beamforming for physical-layer security of two-way relay networks. IEEE Transactions on Signal Processing, 60(7), 3532–3545.MathSciNetCrossRefMATH Wang, H. M., Yin, Q., & Xia, X. G. (2012). Distributed beamforming for physical-layer security of two-way relay networks. IEEE Transactions on Signal Processing, 60(7), 3532–3545.MathSciNetCrossRefMATH
29.
Zurück zum Zitat Huang, X., Wu, J., & Wen, Y. (2016). Rate-adaptive feedback with Bayesian compressive sensing in multiuser MIMO beamforming systems. IEEE Transactions on Wireless Communications, 15(7), 4839–4851. Huang, X., Wu, J., & Wen, Y. (2016). Rate-adaptive feedback with Bayesian compressive sensing in multiuser MIMO beamforming systems. IEEE Transactions on Wireless Communications, 15(7), 4839–4851.
30.
Zurück zum Zitat Shafie, A. E., Niyato, D., & Dhahir, N. A. (2016). Artificial-noise-aided secure MIMO full-duplex relay channels with fixed-power transmissions. IEEE Communications Letters, 20(8), 1591–1594.CrossRef Shafie, A. E., Niyato, D., & Dhahir, N. A. (2016). Artificial-noise-aided secure MIMO full-duplex relay channels with fixed-power transmissions. IEEE Communications Letters, 20(8), 1591–1594.CrossRef
31.
Zurück zum Zitat Wang, H. M., Luo, M., Xia, X. G., et al. (2013). Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdroppers CSI. IEEE Transactions on Wireless Communications, 20(1), 39–42. Wang, H. M., Luo, M., Xia, X. G., et al. (2013). Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdroppers CSI. IEEE Transactions on Wireless Communications, 20(1), 39–42.
32.
Zurück zum Zitat Chisaguano, D. J. R., Hou, Y., & Higashino, T. (2016). Low-complexity channel estimation and detection for MIMO-OFDM receiver with ESPAR antenna. IEEE Transactions on Vehicular Technology, 65(10), 8297–8308.CrossRef Chisaguano, D. J. R., Hou, Y., & Higashino, T. (2016). Low-complexity channel estimation and detection for MIMO-OFDM receiver with ESPAR antenna. IEEE Transactions on Vehicular Technology, 65(10), 8297–8308.CrossRef
33.
Zurück zum Zitat Wu, C. Y., Lan, P. C., Yeh, P. C., et al. (2013). Practical physical layer security schemes for MIMO-OFDM systems using precoding matrix indices. IEEE Journal on Selected Areas in Communications, 31(9), 1687–1700.CrossRef Wu, C. Y., Lan, P. C., Yeh, P. C., et al. (2013). Practical physical layer security schemes for MIMO-OFDM systems using precoding matrix indices. IEEE Journal on Selected Areas in Communications, 31(9), 1687–1700.CrossRef
34.
Zurück zum Zitat Lee, D. (2016). MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 20(10), 2115–2118.CrossRef Lee, D. (2016). MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 20(10), 2115–2118.CrossRef
35.
Zurück zum Zitat Akitaya, T., Asano, S., & Saba, T. (2014). Time-domain artificial noise generation technique using time-domain and frequency-domain processing for physical layer security in MIMO–OFDM systems. In Proceedings of IEEE international conference on communication, workshops, Sydney, Australia (pp. 807–812). Akitaya, T., Asano, S., & Saba, T. (2014). Time-domain artificial noise generation technique using time-domain and frequency-domain processing for physical layer security in MIMO–OFDM systems. In Proceedings of IEEE international conference on communication, workshops, Sydney, Australia (pp. 807–812).
Metadaten
Titel
MMSE-based-filter and artificial noise design for MIMO–OFDM systems
verfasst von
Ming Li
Wenfei Liu
Xiaowen Tian
Zihuan Wang
Qian Liu
Publikationsdatum
30.08.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1572-4

Weitere Artikel der Ausgabe 2/2019

Wireless Networks 2/2019 Zur Ausgabe

Neuer Inhalt