Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2020

24.04.2020 | ORIGINAL ARTICLE

Modeling and experimental study of different discontinuous micro-grinding tools

verfasst von: Tao Yu, Jun Cheng, Chunchun Gao, Jun Wu, Zhaozhi Guo

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, two different types of discontinuous micro-grinding tools are designed and fabricated, which respectively are straight-type effective units (STR) tool and screw-type effective units (SC) tool, and the number of effective grinding zones is designed as three and four respectively. The grinding mechanism between the workpiece and the abrasive grains of discontinuous micro-grinding tools is studied. Grinding force model of two different types of discontinuous micro-grinding tools is established. In order to verify the correctness of the grinding force model and the superiority of the designed discontinuous micro-grinding tools, a series of contrast experiments between the designed discontinuous micro-grinding tools and regular cylindrical (RC) micro-grinding tool are designed. It is experimentally and then theoretically validated that grinding forces of discontinuous micro-grinding tools are much lower than RC grinding tool. Besides, the grinding force amplitude and the grinding force fluctuation degree of RC tool are greater than that of the four kinds of discontinuous micro-grinding tools. Besides, because the discontinuous micro-grinding tools have good ability of chip removal and chip capacity, the machined surface quality of the four-SC micro-grinding tools is better than that of the RC grinding tool with the increase of feeding velocity. Meanwhile, the fabricated four different types of discontinuous micro-grinding tools were compared in terms of tool wear, workpiece surface quality, and grinding force. Among them, chip removal ability of the four-SC grinding tool is superior to the other micro-grinding tools; therefore, the four-screw-type effective units grinding tool own a better tool wear-resisting property, a longer tool life.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aurich JC, Engmann J, Schueler GM (2009) Micro grinding tool for manufacture of complex structures in brittle materials[J]. CIRP Ann Manuf Technol 58(1):311–314CrossRef Aurich JC, Engmann J, Schueler GM (2009) Micro grinding tool for manufacture of complex structures in brittle materials[J]. CIRP Ann Manuf Technol 58(1):311–314CrossRef
2.
Zurück zum Zitat Lee PH, Sang WL (2011) Experimental characterization of micro-grinding process using compressed chilly air[J]. Int J Mach Tool Manu 51(3):201–209CrossRef Lee PH, Sang WL (2011) Experimental characterization of micro-grinding process using compressed chilly air[J]. Int J Mach Tool Manu 51(3):201–209CrossRef
3.
Zurück zum Zitat Park HW, Liang SY (2008) Force modeling of micro-grinding incorporating crystallographic effects[J]. Int J Mach Tool Manu 48(15):1658–1667CrossRef Park HW, Liang SY (2008) Force modeling of micro-grinding incorporating crystallographic effects[J]. Int J Mach Tool Manu 48(15):1658–1667CrossRef
4.
Zurück zum Zitat Kopac J, Krajnik P (2006) High-performance grinding – a review. J Mater ProcessTechnol 75(1–3):278–284CrossRef Kopac J, Krajnik P (2006) High-performance grinding – a review. J Mater ProcessTechnol 75(1–3):278–284CrossRef
5.
Zurück zum Zitat Hugo WHB (1925) Segmental grinding wheel. US patent US1526953 Hugo WHB (1925) Segmental grinding wheel. US patent US1526953
6.
Zurück zum Zitat Sherk HE (1936) Slotted Abrasive Wheel. US patent US2049874 Sherk HE (1936) Slotted Abrasive Wheel. US patent US2049874
7.
Zurück zum Zitat Nguyen T, Zhang LC (2009) Performance of a new segmented grinding wheel system. Int J Mach Tools Manuf 49(3):291–296CrossRef Nguyen T, Zhang LC (2009) Performance of a new segmented grinding wheel system. Int J Mach Tools Manuf 49(3):291–296CrossRef
8.
Zurück zum Zitat Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119CrossRef Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119CrossRef
9.
Zurück zum Zitat Kwak JS, Ha MK (2001) Force modeling and machining characteristics of the intermittent grinding wheels. KSME Int J 15(3):351–356CrossRef Kwak JS, Ha MK (2001) Force modeling and machining characteristics of the intermittent grinding wheels. KSME Int J 15(3):351–356CrossRef
10.
Zurück zum Zitat Aurich JC, Herzenstiel P, Sudermann H, Magg T (2008) High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Ann Manuf Technol 57(1):357–362CrossRef Aurich JC, Herzenstiel P, Sudermann H, Magg T (2008) High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Ann Manuf Technol 57(1):357–362CrossRef
11.
Zurück zum Zitat Tawakoli T, Rabiey M (2008) An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach Sci Technol 12(4):514–528CrossRef Tawakoli T, Rabiey M (2008) An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach Sci Technol 12(4):514–528CrossRef
12.
Zurück zum Zitat Denkena B, Grove T, Göttsching T, Silva EJD (2014) Enhanced grinding performance by means of patterned grinding wheels. Int J Adv Manuf Technol 77(9–12):1–7 Denkena B, Grove T, Göttsching T, Silva EJD (2014) Enhanced grinding performance by means of patterned grinding wheels. Int J Adv Manuf Technol 77(9–12):1–7
13.
Zurück zum Zitat Oliveira JFG, Bottene AC, França TV (2010) A novel dressing technique for texturing of ground surfaces. CIRP Ann Manuf Technol 59(1):361–364CrossRef Oliveira JFG, Bottene AC, França TV (2010) A novel dressing technique for texturing of ground surfaces. CIRP Ann Manuf Technol 59(1):361–364CrossRef
14.
Zurück zum Zitat Jin DX, Meng Z (2004) Research for discontinuous grinding wheel with multiporous grooves. Key Eng Mater 259-260:117–121CrossRef Jin DX, Meng Z (2004) Research for discontinuous grinding wheel with multiporous grooves. Key Eng Mater 259-260:117–121CrossRef
15.
Zurück zum Zitat Lee KW, Wong PK, Zhang JH (2000) Study on the grinding of advanced ceramics with slotted diamond wheels. J Mater Process Technol 100(1):230–235CrossRef Lee KW, Wong PK, Zhang JH (2000) Study on the grinding of advanced ceramics with slotted diamond wheels. J Mater Process Technol 100(1):230–235CrossRef
16.
Zurück zum Zitat Guo, Changsheng, Chen, Yan (2018) Thermal modeling and optimization of interrupted grinding[J]. CIRP Annals:S0007850618301070 Guo, Changsheng, Chen, Yan (2018) Thermal modeling and optimization of interrupted grinding[J]. CIRP Annals:S0007850618301070
17.
Zurück zum Zitat Wu J, Cheng J (2019) Modeling and experimental study of unequal intervalsintermittent(UII) diamond micro grinding tool. Int J Adv Manuf Technol 103:2445–2468CrossRef Wu J, Cheng J (2019) Modeling and experimental study of unequal intervalsintermittent(UII) diamond micro grinding tool. Int J Adv Manuf Technol 103:2445–2468CrossRef
18.
Zurück zum Zitat Wen X, Cheng J (2019) Experimental study of a specially designed diamond micro discontinuous grinding tool. Int J Adv Manuf Technol 102:3341–3356CrossRef Wen X, Cheng J (2019) Experimental study of a specially designed diamond micro discontinuous grinding tool. Int J Adv Manuf Technol 102:3341–3356CrossRef
19.
Zurück zum Zitat Azarhoushang B (2014) Wear of non-segmented and segmented diamond wheels in high-speed deep grinding of carbon fibrereinforced ceramics. Int J Adv Manuf Technol 74(9–12):1293–1302CrossRef Azarhoushang B (2014) Wear of non-segmented and segmented diamond wheels in high-speed deep grinding of carbon fibrereinforced ceramics. Int J Adv Manuf Technol 74(9–12):1293–1302CrossRef
20.
Zurück zum Zitat Lyu Y, Yu H, Wang J, Chen C, Xiang L (2017) Study on the grinding temperature of the grinding wheel with an abrasive phyllotactic pattern. Int J Adv Manuf Technol 91(1–4):895–906CrossRef Lyu Y, Yu H, Wang J, Chen C, Xiang L (2017) Study on the grinding temperature of the grinding wheel with an abrasive phyllotactic pattern. Int J Adv Manuf Technol 91(1–4):895–906CrossRef
21.
Zurück zum Zitat Malkin S (1991) Grinding technology: theory and applications of machining with abrasives[J]. Int J Mach Tool Manu 31(3):435–436CrossRef Malkin S (1991) Grinding technology: theory and applications of machining with abrasives[J]. Int J Mach Tool Manu 31(3):435–436CrossRef
22.
Zurück zum Zitat Jiang JL, Ge PQ, Hong J (2013) Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction. Int J Adv Manuf Tech 67(5–8):1035–1052CrossRef Jiang JL, Ge PQ, Hong J (2013) Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction. Int J Adv Manuf Tech 67(5–8):1035–1052CrossRef
24.
Zurück zum Zitat Li LC, Fu JZ (1980) A study of grinding force mathematical model. Annals of CIRP 29:245–249CrossRef Li LC, Fu JZ (1980) A study of grinding force mathematical model. Annals of CIRP 29:245–249CrossRef
25.
Zurück zum Zitat Younis M, Sadek MM, El Wardani T (1987) A new approach to development of a grinding force model. Transactions of ASME 109:306–313 Younis M, Sadek MM, El Wardani T (1987) A new approach to development of a grinding force model. Transactions of ASME 109:306–313
26.
Zurück zum Zitat Durgumahanti USP, Singh V, Rao PV (2010) A new model for grinding force prediction and analysis[J]. Int J Mach Tool Manu 50(3):231–240CrossRef Durgumahanti USP, Singh V, Rao PV (2010) A new model for grinding force prediction and analysis[J]. Int J Mach Tool Manu 50(3):231–240CrossRef
27.
Zurück zum Zitat De Vathaire M, Delamare F, Felder E (1981) An upper bound model of ploughing by a pyramidal indenter. Wear 66:55–64CrossRef De Vathaire M, Delamare F, Felder E (1981) An upper bound model of ploughing by a pyramidal indenter. Wear 66:55–64CrossRef
28.
Zurück zum Zitat Jin Y, Cheng J (2017) Experimental investigation on surface generation mechanism of micro-grinding of hard brittle crystal materials. Int J Adv Manuf Technol 91:3953CrossRef Jin Y, Cheng J (2017) Experimental investigation on surface generation mechanism of micro-grinding of hard brittle crystal materials. Int J Adv Manuf Technol 91:3953CrossRef
29.
Zurück zum Zitat Aurich JC, Braun O, Warnecke G (2003) Development of a, Superabrasive grinding wheel with defined grain structure using kinematic simulation[J]. 52(1):275–280 Aurich JC, Braun O, Warnecke G (2003) Development of a, Superabrasive grinding wheel with defined grain structure using kinematic simulation[J]. 52(1):275–280
Metadaten
Titel
Modeling and experimental study of different discontinuous micro-grinding tools
verfasst von
Tao Yu
Jun Cheng
Chunchun Gao
Jun Wu
Zhaozhi Guo
Publikationsdatum
24.04.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05152-w

Weitere Artikel der Ausgabe 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.