Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2010

01.02.2010 | Research Paper

Modeling catalyst nucleation for carbon nanotube growth by chemical-vapor and plasma-enhanced chemical-vapor deposition methods

verfasst von: Yaser Abdi, Shamsoddin Mohajerzadeh, Arzi Ezatollah

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The nucleation of the nickel nanoparticles on substrates, a critical process in the growth of carbon nanotubes, has been modeled analytically using thermodynamic and statistical theories. It was hypothesized that during the initial stages of the annealing process smaller nanoparticles with the size of about 5 nm form and, subsequently, randomly hop to make larger nanoparticles. The minimum and maximum diameter of the nickel nanoparticles can be obtained from the derived expressions. In addition, the size-dependent probability of forming the nanoparticles was examined at various temperatures and plasma power densities in chemical-vapor deposition and plasma-enhanced chemical-vapor deposition methods, respectively. The theoretical results presented agreed very well with experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdi Y, Mohajerzadeh S, Hoseinzadegan H, Koohsorkhi J (2006) Carbon nanostructures on silicon substrates suitable for nanolithography. Appl Phys Lett 88:1–3 Abdi Y, Mohajerzadeh S, Hoseinzadegan H, Koohsorkhi J (2006) Carbon nanostructures on silicon substrates suitable for nanolithography. Appl Phys Lett 88:1–3
Zurück zum Zitat Abdi Y, Jamei M, Hashemi P, Mohajerzadeha S, Robertson MD, Burns MJ, MacLachlan JM (2007) Visible photoluminescence from a nanocrystalline porous silicon structure fabricated by a plasma hydrogenation and annealing method. J Appl Phys 101:0443091–0443098CrossRef Abdi Y, Jamei M, Hashemi P, Mohajerzadeha S, Robertson MD, Burns MJ, MacLachlan JM (2007) Visible photoluminescence from a nanocrystalline porous silicon structure fabricated by a plasma hydrogenation and annealing method. J Appl Phys 101:0443091–0443098CrossRef
Zurück zum Zitat Abdi Y, Mohajerzadeh S, Koohsorkhi J, Robertson MD, Andrei CM (2008) A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes. Carbon 46:1611–1625CrossRef Abdi Y, Mohajerzadeh S, Koohsorkhi J, Robertson MD, Andrei CM (2008) A plasma enhanced chemical vapor deposition process to achieve branched carbon nanotubes. Carbon 46:1611–1625CrossRef
Zurück zum Zitat Abdi Y, Mohajerzadeh S, Arzi E (2009) Plasma-assisted control on the growth of carbon nanotubes on patterned structures. Fullerenes, nanotubes and carbon nanostructures. vol 17, pp 273–284 Abdi Y, Mohajerzadeh S, Arzi E (2009) Plasma-assisted control on the growth of carbon nanotubes on patterned structures. Fullerenes, nanotubes and carbon nanostructures. vol 17, pp 273–284
Zurück zum Zitat Bertram HN, Richter HJ (1999) Arrhenius-Néel thermal decay in polycrystalline thin film media. J Appl Phys 85:4991–4993CrossRefADS Bertram HN, Richter HJ (1999) Arrhenius-Néel thermal decay in polycrystalline thin film media. J Appl Phys 85:4991–4993CrossRefADS
Zurück zum Zitat Chen IC, Chen LH, Orme CA, Jin S (2007) Control of curvature in highly compliant probe cantilevers during carbon nanotube growth. Nano Lett 7:3035–3040CrossRefPubMedADS Chen IC, Chen LH, Orme CA, Jin S (2007) Control of curvature in highly compliant probe cantilevers during carbon nanotube growth. Nano Lett 7:3035–3040CrossRefPubMedADS
Zurück zum Zitat Denysenko I, Ostrikov K (2009) Plasma heating effects in catalyzed growth of carbon nanofibres. J Phys D 42:0152081–0152086CrossRef Denysenko I, Ostrikov K (2009) Plasma heating effects in catalyzed growth of carbon nanofibres. J Phys D 42:0152081–0152086CrossRef
Zurück zum Zitat Ducati C, Alexandrou I, Chhowalla M, Amaratunga GAJ, Robertson J (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3320CrossRefADS Ducati C, Alexandrou I, Chhowalla M, Amaratunga GAJ, Robertson J (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3320CrossRefADS
Zurück zum Zitat Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielson JR, Abild-Pederson F, Norskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature (London) 427:426-429CrossRefADS Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielson JR, Abild-Pederson F, Norskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature (London) 427:426-429CrossRefADS
Zurück zum Zitat Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) Effects of catalyst film thickness on plasma enhanced carbon nanotube growth. J Appl Phys 98:0343081–0343088CrossRef Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) Effects of catalyst film thickness on plasma enhanced carbon nanotube growth. J Appl Phys 98:0343081–0343088CrossRef
Zurück zum Zitat Jian SR (2009) Effects of H2 plasma pretreated Ni catalysts on the growth of carbon nanotubes. Mater Chem Phys 115:740–743CrossRef Jian SR (2009) Effects of H2 plasma pretreated Ni catalysts on the growth of carbon nanotubes. Mater Chem Phys 115:740–743CrossRef
Zurück zum Zitat Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:2176–2180CrossRefADS Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:2176–2180CrossRefADS
Zurück zum Zitat Jiang Q, Zhang SH, Li JC (2004) Grain size-dependent diffusion activation energy in nanomaterials. Solid State Commun 130:581–584CrossRefADS Jiang Q, Zhang SH, Li JC (2004) Grain size-dependent diffusion activation energy in nanomaterials. Solid State Commun 130:581–584CrossRefADS
Zurück zum Zitat King HW (1983) Electron theory of metals. In: Cahn RW (ed) Physical metallurgy, chap 2. North Holland Publishing Company, Amsterdam, p 64 King HW (1983) Electron theory of metals. In: Cahn RW (ed) Physical metallurgy, chap 2. North Holland Publishing Company, Amsterdam, p 64
Zurück zum Zitat Koshio A, Inakuma M, Wang ZW, Sugai T, Shinohara H (2000) In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by Arc-discharge. J Phys Chem B 104:7908–7913CrossRef Koshio A, Inakuma M, Wang ZW, Sugai T, Shinohara H (2000) In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by Arc-discharge. J Phys Chem B 104:7908–7913CrossRef
Zurück zum Zitat Krungleviciute V, Heroux L, Migone AD, Kingston CT, Simard B (2005) Isosteric heat of argon adsorbed on single-walled carbon nanotubes prepared by laser ablation. J Phys Chem B 109:9317–9320CrossRefPubMed Krungleviciute V, Heroux L, Migone AD, Kingston CT, Simard B (2005) Isosteric heat of argon adsorbed on single-walled carbon nanotubes prepared by laser ablation. J Phys Chem B 109:9317–9320CrossRefPubMed
Zurück zum Zitat Levchenko I, Rider AE, Ostrikov K (2007) Control of core—shell structure and elemental composition of binary quantum dots. Appl Phys Lett 90:1931101–1931103CrossRef Levchenko I, Rider AE, Ostrikov K (2007) Control of core—shell structure and elemental composition of binary quantum dots. Appl Phys Lett 90:1931101–1931103CrossRef
Zurück zum Zitat Lewis B, Anderson JC (1978) Nucleation and growth of thin films. Academic Press, London, pp 56–58 Lewis B, Anderson JC (1978) Nucleation and growth of thin films. Academic Press, London, pp 56–58
Zurück zum Zitat Li X, Tu X, Zaric S, Welsher K, Seo WS, Zhao W, Dai H (2007) Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc 129:15770–15771CrossRefPubMed Li X, Tu X, Zaric S, Welsher K, Seo WS, Zhao W, Dai H (2007) Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc 129:15770–15771CrossRefPubMed
Zurück zum Zitat Liang LH, Shen CM, Du SX, Liu WM, Xie XC, Gao HJ (2004) Increase in thermal stability induced by organic coatings on nanoparticles. Phys Rev B 70:2054191–2054195 Liang LH, Shen CM, Du SX, Liu WM, Xie XC, Gao HJ (2004) Increase in thermal stability induced by organic coatings on nanoparticles. Phys Rev B 70:2054191–2054195
Zurück zum Zitat Liang LH et al (2005) Nucleation and reshaping thermodynamics of Ni as catalyst of carbon nanotubes. Phys Rev B 72:035453–035455CrossRefADS Liang LH et al (2005) Nucleation and reshaping thermodynamics of Ni as catalyst of carbon nanotubes. Phys Rev B 72:035453–035455CrossRefADS
Zurück zum Zitat Liu JW, Wang W, Zheng WT, Li JX, Guan QF, Su JL, Qi JL, Jiang Q (2007) Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition. Carbon 45:681–683CrossRef Liu JW, Wang W, Zheng WT, Li JX, Guan QF, Su JL, Qi JL, Jiang Q (2007) Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition. Carbon 45:681–683CrossRef
Zurück zum Zitat Lu J, Yi SS, Kopley T, Qian C, Liu J, Gulari E (2006) Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. J Phys Chem B 110:6655–6660CrossRefPubMed Lu J, Yi SS, Kopley T, Qian C, Liu J, Gulari E (2006) Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. J Phys Chem B 110:6655–6660CrossRefPubMed
Zurück zum Zitat Makihara K, Shimanoe K, Ikeda M, Higashi S, Miyazaki S (2008) Self-assembling formation of ninanodots on SiO2 induced by remote H2-plasma treatment and their electrical charging characteristics. Jpn J Appl Phys 47:3099–3102CrossRefADS Makihara K, Shimanoe K, Ikeda M, Higashi S, Miyazaki S (2008) Self-assembling formation of ninanodots on SiO2 induced by remote H2-plasma treatment and their electrical charging characteristics. Jpn J Appl Phys 47:3099–3102CrossRefADS
Zurück zum Zitat Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J Phys Chem B 110:9850–9855CrossRefPubMed Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J Phys Chem B 110:9850–9855CrossRefPubMed
Zurück zum Zitat Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301–0413039CrossRefADS Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301–0413039CrossRefADS
Zurück zum Zitat Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sour Sci Technol 12:205–216CrossRefADS Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sour Sci Technol 12:205–216CrossRefADS
Zurück zum Zitat Moshkaleva SA, Verissimo C (2007) Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. J Appl Phys 102:044303–044306CrossRefADS Moshkaleva SA, Verissimo C (2007) Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. J Appl Phys 102:044303–044306CrossRefADS
Zurück zum Zitat Safonov VL (1999) Micromagnetic grain as a nonlinear oscillator. J Magn Magn Mater 195:523–529CrossRefADS Safonov VL (1999) Micromagnetic grain as a nonlinear oscillator. J Magn Magn Mater 195:523–529CrossRefADS
Zurück zum Zitat Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK (2004) Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc 126:4462–4463CrossRefPubMed Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK (2004) Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc 126:4462–4463CrossRefPubMed
Zurück zum Zitat Teo KBK, Hash DB, Lacerda RG, Rupesinghe NL, Bell MS, Dalal SH, Bose D, Govindan TR, Cruden BA, Chhowalla M, Amaratunga GAJ, Meyyappan M, Milne WI (2004) The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett 4:921–926CrossRefADS Teo KBK, Hash DB, Lacerda RG, Rupesinghe NL, Bell MS, Dalal SH, Bose D, Govindan TR, Cruden BA, Chhowalla M, Amaratunga GAJ, Meyyappan M, Milne WI (2004) The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett 4:921–926CrossRefADS
Zurück zum Zitat Turnbull D (1950) Formating of crystal nuclei in liquid metal. J Appl Phys 21:1022–1028CrossRefADS Turnbull D (1950) Formating of crystal nuclei in liquid metal. J Appl Phys 21:1022–1028CrossRefADS
Zurück zum Zitat Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefADS Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefADS
Zurück zum Zitat Valentini L, Kennya JM, Lozzi L, Santucci S (2002) Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: role of nitrogen and catalyst layer thickness. J Appl Phys 92:6188–6194CrossRefADS Valentini L, Kennya JM, Lozzi L, Santucci S (2002) Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: role of nitrogen and catalyst layer thickness. J Appl Phys 92:6188–6194CrossRefADS
Zurück zum Zitat Yaws CL (1998) Chemical properties handbook. McGraw-Hill, NY, USA, p 288 Yaws CL (1998) Chemical properties handbook. McGraw-Hill, NY, USA, p 288
Zurück zum Zitat Zheng F, Liang L, Gao Y, Sukamto JH, Aardahl CL (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRefADS Zheng F, Liang L, Gao Y, Sukamto JH, Aardahl CL (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRefADS
Metadaten
Titel
Modeling catalyst nucleation for carbon nanotube growth by chemical-vapor and plasma-enhanced chemical-vapor deposition methods
verfasst von
Yaser Abdi
Shamsoddin Mohajerzadeh
Arzi Ezatollah
Publikationsdatum
01.02.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9800-1

Weitere Artikel der Ausgabe 2/2010

Journal of Nanoparticle Research 2/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.