Skip to main content
Erschienen in: Electrical Engineering 1/2021

24.07.2020 | Original Paper

Modeling of a solar thermal power generation plant for the coastal zones through the TRNSYS program

verfasst von: Gary Ampuno, Juan Lata-García, Francisco Jurado

Erschienen in: Electrical Engineering | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing the generation of renewable energies to reduce the consumption of fossil fuels that produce high concentration of greenhouse gases is the priority that several governments have set for themselves in the medium term. In this paper, the modeling of a solar thermal energy generation plant is carried out. The climatic data correspond to two coastal cities and an island in Ecuador. The main contribution is the simulation of a complete model of solar collector fields and power conversion systems, in which the variables of output temperature and oil flow intervene at the same time. Previous research uses only the outlet temperature to evaluate the power plants. The model of the solar thermal plant is composed of a solar collector field, a storage tank, and an energy conversion system. As a result, a model of a solar thermal plant is obtained that allows to make decisions when considering the incorporation of microgrids in electrical systems isolated. The use of solar thermal technology allows to reduce the risk of spills from the transport of fossil fuels on ships. In addition, the CO2 emissions involved in the construction, operation, and maintenance of a solar thermal power plant are detailed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rasiah R, Al-Amin AQ, Ahmed A, Leal W, Calvo E (2016) Climate mitigation roadmap: assessing low carbon scenarios for Malaysia. J Clean Prod 133:272–283CrossRef Rasiah R, Al-Amin AQ, Ahmed A, Leal W, Calvo E (2016) Climate mitigation roadmap: assessing low carbon scenarios for Malaysia. J Clean Prod 133:272–283CrossRef
2.
Zurück zum Zitat Mcinerney C, Johannsdottir L (2016) Lima Paris Action Agenda: focus on private finance—note from COP21. J Clean Prod 126:707–710CrossRef Mcinerney C, Johannsdottir L (2016) Lima Paris Action Agenda: focus on private finance—note from COP21. J Clean Prod 126:707–710CrossRef
3.
Zurück zum Zitat Krismadinata NR, Abd HW, Ping JS (2013) Photovoltaic module modelling using Simulink/MatLab. Procedia Environ Sci 17:537–546CrossRef Krismadinata NR, Abd HW, Ping JS (2013) Photovoltaic module modelling using Simulink/MatLab. Procedia Environ Sci 17:537–546CrossRef
4.
Zurück zum Zitat Camacho E, Berenguel M, Rubio F, Martinez D (2012) Control of solar energy systems. Springer, BerlinCrossRef Camacho E, Berenguel M, Rubio F, Martinez D (2012) Control of solar energy systems. Springer, BerlinCrossRef
7.
Zurück zum Zitat Barcia LA et al (2015) Dynamic modeling of the solar field in parabolic trough solar power plants. Energies 8:13361–13377CrossRef Barcia LA et al (2015) Dynamic modeling of the solar field in parabolic trough solar power plants. Energies 8:13361–13377CrossRef
8.
Zurück zum Zitat Barcia LA, Peon R, Díaz J, Pernía AM, Martínez JÁ (2017) Heat transfer fluid temperature control in a thermoelectric solar power plant. Energies 10:1–11CrossRef Barcia LA, Peon R, Díaz J, Pernía AM, Martínez JÁ (2017) Heat transfer fluid temperature control in a thermoelectric solar power plant. Energies 10:1–11CrossRef
9.
Zurück zum Zitat Michael J, Wolfgang G, Mollenbruck F, Monnigmann M (2014) Plant-wide control of a parabolic trough power plant with thermal energy storage. In: The international federation of automatic control, pp 419–425 Michael J, Wolfgang G, Mollenbruck F, Monnigmann M (2014) Plant-wide control of a parabolic trough power plant with thermal energy storage. In: The international federation of automatic control, pp 419–425
10.
Zurück zum Zitat Dinter F, Möller L (2016) A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa. In: AIP Conf. Proc., vol 1734 Dinter F, Möller L (2016) A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa. In: AIP Conf. Proc., vol 1734
11.
Zurück zum Zitat Khenissi A, Krüger D, Hirsch T, Hennecke K (2015) Return of experience on transient behavior at the DSG solar thermal power plant in Kanchanaburi, Thailand. Energy Procedia 69:1603–1612CrossRef Khenissi A, Krüger D, Hirsch T, Hennecke K (2015) Return of experience on transient behavior at the DSG solar thermal power plant in Kanchanaburi, Thailand. Energy Procedia 69:1603–1612CrossRef
12.
Zurück zum Zitat Jebasingh VK, Herbert GMJ (2016) A review of solar parabolic trough collector. Renew Sustain Energy Rev 54:1085–1091CrossRef Jebasingh VK, Herbert GMJ (2016) A review of solar parabolic trough collector. Renew Sustain Energy Rev 54:1085–1091CrossRef
13.
Zurück zum Zitat Bava, Furbo S (2017) Development and validation of a detailed TRNSYS-MATLAB model for large solar collector fields for district heating applications. Energy 135:698–708CrossRef Bava, Furbo S (2017) Development and validation of a detailed TRNSYS-MATLAB model for large solar collector fields for district heating applications. Energy 135:698–708CrossRef
14.
Zurück zum Zitat Camacho EF, Gallego AJ (2013) Optimal operation in solar trough plants: a case study. Sol Energy 95:106–117CrossRef Camacho EF, Gallego AJ (2013) Optimal operation in solar trough plants: a case study. Sol Energy 95:106–117CrossRef
16.
Zurück zum Zitat Jansuya P, Kumsuwan Y (2013) Design of MATLAB/Simulink modeling of fixed-pitch angle wind turbine simulator. Energy Procedia 34:362–370CrossRef Jansuya P, Kumsuwan Y (2013) Design of MATLAB/Simulink modeling of fixed-pitch angle wind turbine simulator. Energy Procedia 34:362–370CrossRef
17.
Zurück zum Zitat Ampuño G, Roca L, Berenguel M, Gil JD, Pérez M, Normey-Rico JE (2018) Modeling and simulation of a solar field based on flat-plate collectors. 170:369–378 Ampuño G, Roca L, Berenguel M, Gil JD, Pérez M, Normey-Rico JE (2018) Modeling and simulation of a solar field based on flat-plate collectors. 170:369–378
18.
Zurück zum Zitat Gíuliano S, Buck R (2011) Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy. J Energy Eng 133:1–8 Gíuliano S, Buck R (2011) Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy. J Energy Eng 133:1–8
19.
Zurück zum Zitat Aidroos D, Abdul H, Zaidi W, Omar W (2015) Historical development of concentrating solar power technologies to generate clean electricity efficiently—a review. Renew Sustain Energy Rev 41:996–1027CrossRef Aidroos D, Abdul H, Zaidi W, Omar W (2015) Historical development of concentrating solar power technologies to generate clean electricity efficiently—a review. Renew Sustain Energy Rev 41:996–1027CrossRef
20.
Zurück zum Zitat Guney MS (2016) Solar power and application methods. Renew Sustain Energy Rev 57:776–785CrossRef Guney MS (2016) Solar power and application methods. Renew Sustain Energy Rev 57:776–785CrossRef
21.
Zurück zum Zitat Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation—a review. Renew Sustain Energy Rev 55:414–425CrossRef Khan J, Arsalan MH (2016) Solar power technologies for sustainable electricity generation—a review. Renew Sustain Energy Rev 55:414–425CrossRef
22.
Zurück zum Zitat Carmona R (1985) Análisis modelado y control de un campo de colectores solares distribuidos con un sistema de seguimiento de un eje. Universidad de Sevilla, Seville Carmona R (1985) Análisis modelado y control de un campo de colectores solares distribuidos con un sistema de seguimiento de un eje. Universidad de Sevilla, Seville
23.
Zurück zum Zitat Camacho EF, Berenguel M, Gallego AJ (2014) Control of thermal solar energy plants. J Process Control 24(2):332–340CrossRef Camacho EF, Berenguel M, Gallego AJ (2014) Control of thermal solar energy plants. J Process Control 24(2):332–340CrossRef
24.
Zurück zum Zitat Alsharkawi A, Rossiter JA (2016) Dual-mode MPC for a concentrated solar thermal power plant. IFAC PapersOnLine 49(7):260–265MathSciNetCrossRef Alsharkawi A, Rossiter JA (2016) Dual-mode MPC for a concentrated solar thermal power plant. IFAC PapersOnLine 49(7):260–265MathSciNetCrossRef
25.
Zurück zum Zitat Bayas A (2016) Diseño de estrategias de control difuso robusto ante incertidumbre paramétrica para plantas de colectores solares. Universidad de Chile, Santiago Bayas A (2016) Diseño de estrategias de control difuso robusto ante incertidumbre paramétrica para plantas de colectores solares. Universidad de Chile, Santiago
26.
Zurück zum Zitat Camacho EF, Berenguel M (2010) Control of solar energy systems Camacho EF, Berenguel M (2010) Control of solar energy systems
27.
Zurück zum Zitat Cirre CM (2009) Reference governor optimization and control of a distributed solar collector field. 193:709–717 Cirre CM (2009) Reference governor optimization and control of a distributed solar collector field. 193:709–717
29.
Zurück zum Zitat Drosou V, Valenzuela L, Dimoudi A (2016) A new TRNSYS component for parabolic trough collector simulation. Int J Sustain Energy 1–21 Drosou V, Valenzuela L, Dimoudi A (2016) A new TRNSYS component for parabolic trough collector simulation. Int J Sustain Energy 1–21
30.
Zurück zum Zitat Reference TRNSYS 17 a TRaNsient SYstem Simulation program. In: Solar Energy Laboratory (ed) Mathematical reference, vol 5. University of Wisconsin-Madison, Madison Reference TRNSYS 17 a TRaNsient SYstem Simulation program. In: Solar Energy Laboratory (ed) Mathematical reference, vol 5. University of Wisconsin-Madison, Madison
31.
Zurück zum Zitat Wei D, Li B (2017) Iterative-feedback-tuning control strategy for air-conditioning refrigeration station systems. J Comput 28(6):335–346 Wei D, Li B (2017) Iterative-feedback-tuning control strategy for air-conditioning refrigeration station systems. J Comput 28(6):335–346
32.
Zurück zum Zitat Global Sustainable Electricity Partnership Proyecto Eólico Isla San Cristóbal—Galápagos 2003–2016 Global Sustainable Electricity Partnership Proyecto Eólico Isla San Cristóbal—Galápagos 2003–2016
33.
Zurück zum Zitat Burkhardt J, Heath HG, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation systematic review and harmonization. Environ Sci Technol 16:93–109 Burkhardt J, Heath HG, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation systematic review and harmonization. Environ Sci Technol 16:93–109
34.
Zurück zum Zitat Burkhardt J, Heath G, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 2457–2464 Burkhardt J, Heath G, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 2457–2464
35.
Zurück zum Zitat ISO (2006) Environmental management assessment—life cycle—requirements and guidelines. Switzerland, pp 1–54 ISO (2006) Environmental management assessment—life cycle—requirements and guidelines. Switzerland, pp 1–54
Metadaten
Titel
Modeling of a solar thermal power generation plant for the coastal zones through the TRNSYS program
verfasst von
Gary Ampuno
Juan Lata-García
Francisco Jurado
Publikationsdatum
24.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01037-z

Weitere Artikel der Ausgabe 1/2021

Electrical Engineering 1/2021 Zur Ausgabe

Neuer Inhalt