Skip to main content

2023 | OriginalPaper | Buchkapitel

17. Modeling of Global Climate Control

verfasst von : Md. Faruque Hossain

Erschienen in: Global Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model has been proposed to design a sustainable climate for the planet Earth by the activation of the hidden power of dark energy (De) and antimatter (Am) of the Earth. Here, the activation of dark energy (De) of the Earth considering its quantum electrodynamics (QED) function is being analyzed to break the atmospheric CO2 naturally. Subsequently, the activation of antimatter (Am) considering nano-point defect of the electromagnetic field of Earth has been analyzed to transform activated antimatter (Am) into cool-state energy, here denoted as Hossain Cool Energy (HcE) to cool the Earth naturally. Subsequently, this HcE is also being further remodeled to convert it into the thermo-state energy, named as the Hossain Thermal Energy (HtE) by the implementation of Higgs-Bosons (H → γγ) electromagnetic fields to heat the Earth, respectively. The activation of dark energy (De) suggested that it has the excellent hypercharge striking electron force to break the CO2 naturally to convert it into C and O2. Subsequently, the generation of HcE from the (Am) and then transform it into HtE is being tested by a series of computational modeling, which reveals that the activation of the (Am) and its transformation into HcE and HtE are very much doable in anywhere on this planet that certainly can cool and heat the Earth naturally to secure a sustainable climate condition for the Earth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Artemyev, N., Jentschura, U., Serbo, V., & Surzhykov, A. (2012). Strong electromagnetic field effects in ultra-relativistic heavy-ion collisions. European Physical Journal C: Particles and Fields, 72, 1935.CrossRef Artemyev, N., Jentschura, U., Serbo, V., & Surzhykov, A. (2012). Strong electromagnetic field effects in ultra-relativistic heavy-ion collisions. European Physical Journal C: Particles and Fields, 72, 1935.CrossRef
2.
Zurück zum Zitat Baur, G., Hencken, K., & Trautmann, D. (2007). Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Physics Reports, 453, 1–27.CrossRef Baur, G., Hencken, K., & Trautmann, D. (2007). Revisiting unitarity corrections for electromagnetic processes in collisions of relativistic nuclei. Physics Reports, 453, 1–27.CrossRef
3.
Zurück zum Zitat Baur, G., Hencken, K., Trautmann, D., Sadovsky, S., & Kharlov, Y. (2002). Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Physics Reports, 364, 359–450.CrossRef Baur, G., Hencken, K., Trautmann, D., Sadovsky, S., & Kharlov, Y. (2002). Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Physics Reports, 364, 359–450.CrossRef
4.
Zurück zum Zitat Birnbaum, K. M., et al. (2005). Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87–90.CrossRef Birnbaum, K. M., et al. (2005). Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87–90.CrossRef
5.
Zurück zum Zitat Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B - Proceedings Supplements, 228, 63–135.CrossRef Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B - Proceedings Supplements, 228, 63–135.CrossRef
6.
Zurück zum Zitat Broz, M., et al. (2020). A generator of forward neutrons for ultra-peripheral collisions. Computer Physics Communications, 253, 107181.MathSciNetCrossRef Broz, M., et al. (2020). A generator of forward neutrons for ultra-peripheral collisions. Computer Physics Communications, 253, 107181.MathSciNetCrossRef
7.
Zurück zum Zitat Busch, K., et al. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101–202.CrossRef Busch, K., et al. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101–202.CrossRef
8.
Zurück zum Zitat Cardoso, V., Lemos, J. P., & Yoshida, S. (2004). Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Physical Review D, 69, 044004.MathSciNetCrossRef Cardoso, V., Lemos, J. P., & Yoshida, S. (2004). Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Physical Review D, 69, 044004.MathSciNetCrossRef
10.
Zurück zum Zitat Chang, D. E., Sørensen, A. S., Demler, E. A., & Lukin, M. D. (2007). A single-photon transistor using nanoscale surface plasmons. Nature Physics, 3, 807–812.CrossRef Chang, D. E., Sørensen, A. S., Demler, E. A., & Lukin, M. D. (2007). A single-photon transistor using nanoscale surface plasmons. Nature Physics, 3, 807–812.CrossRef
11.
Zurück zum Zitat Chen, G., et al. (2013). Examining non-locality and quantum coherent dynamics induced by a common reservoir. Scientific Reports, 3, 2514.CrossRef Chen, G., et al. (2013). Examining non-locality and quantum coherent dynamics induced by a common reservoir. Scientific Reports, 3, 2514.CrossRef
12.
Zurück zum Zitat Chen, J., Wang, C., Zhang, R., & Xiao, J. (2012). Multiple plasmon-induced transparencies in coupled-resonator systems. Optics Letters, 37, 5133–5135.CrossRef Chen, J., Wang, C., Zhang, R., & Xiao, J. (2012). Multiple plasmon-induced transparencies in coupled-resonator systems. Optics Letters, 37, 5133–5135.CrossRef
13.
Zurück zum Zitat Cheng, M. T., & Song, Y. Y. (2012). Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Optics Letters, 37, 978–980.CrossRef Cheng, M. T., & Song, Y. Y. (2012). Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Optics Letters, 37, 978–980.CrossRef
14.
Zurück zum Zitat Dayan, B., et al. (2008). A photon turnstile dynamically regulated by one atom. Science, 319, 1062–1065.CrossRef Dayan, B., et al. (2008). A photon turnstile dynamically regulated by one atom. Science, 319, 1062–1065.CrossRef
15.
Zurück zum Zitat Dobrynina, A., Kartavtsev, A., & Raffelt, G. (2015). Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion. Physical Review D, 91, 083003.CrossRef Dobrynina, A., Kartavtsev, A., & Raffelt, G. (2015). Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion. Physical Review D, 91, 083003.CrossRef
16.
Zurück zum Zitat Douglas, J. S., et al. (2015). Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9, 326–331.CrossRef Douglas, J. S., et al. (2015). Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9, 326–331.CrossRef
17.
Zurück zum Zitat Dupuis, N. L., et al. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1.MathSciNetMATHCrossRef Dupuis, N. L., et al. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1.MathSciNetMATHCrossRef
18.
Zurück zum Zitat Eichler, J., & Stöhlker, T. (2007). Radiative electron capture in relativistic ion–atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Reports, 439, 1–99.CrossRef Eichler, J., & Stöhlker, T. (2007). Radiative electron capture in relativistic ion–atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Reports, 439, 1–99.CrossRef
19.
Zurück zum Zitat Englund, D., et al. (2010). Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Physical Review Letters, 104, 073904.CrossRef Englund, D., et al. (2010). Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Physical Review Letters, 104, 073904.CrossRef
20.
Zurück zum Zitat Fernandez, J., & Martín, F. (2009). Electron and ion angular distributions in resonant dissociative photoionization of H2 and D2 using linearly polarized light. New Journal of Physics, 11, 043020.CrossRef Fernandez, J., & Martín, F. (2009). Electron and ion angular distributions in resonant dissociative photoionization of H2 and D2 using linearly polarized light. New Journal of Physics, 11, 043020.CrossRef
21.
Zurück zum Zitat Gabor, M., et al. (2009). Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 325, 1367–1371.CrossRef Gabor, M., et al. (2009). Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 325, 1367–1371.CrossRef
22.
Zurück zum Zitat Gleyzes, S., et al. (2007). Quantum jumps of light recording the birth and death of a photon in a cavity. Nature, 446, 297–300.CrossRef Gleyzes, S., et al. (2007). Quantum jumps of light recording the birth and death of a photon in a cavity. Nature, 446, 297–300.CrossRef
23.
Zurück zum Zitat Gould, R. J. (1967). Pair production in photon-photon collisions. Physics Review, 155, 1404–1406.CrossRef Gould, R. J. (1967). Pair production in photon-photon collisions. Physics Review, 155, 1404–1406.CrossRef
24.
Zurück zum Zitat Guerlin, C., et al. (2007). Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448, 889–893.CrossRef Guerlin, C., et al. (2007). Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448, 889–893.CrossRef
25.
Zurück zum Zitat Guo, Y., Al-Jubainawi, A., & Ma, Z. (2019). Performance investigation and optimisation of electrodialysis regeneration for LiCl liquid desiccant cooling systems. Applied Thermal Engineering, 149, 1023–1034.CrossRef Guo, Y., Al-Jubainawi, A., & Ma, Z. (2019). Performance investigation and optimisation of electrodialysis regeneration for LiCl liquid desiccant cooling systems. Applied Thermal Engineering, 149, 1023–1034.CrossRef
26.
Zurück zum Zitat Hencken, K., Baur, G., & Trautmann, D. (2006). Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Physical Review Letters, 96, 012303.CrossRef Hencken, K., Baur, G., & Trautmann, D. (2006). Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Physical Review Letters, 96, 012303.CrossRef
27.
Zurück zum Zitat Hübel, H., et al. (2010). Direct generation of photon triplets using cascaded photon-pair sources. Nature, 466, 601–603.CrossRef Hübel, H., et al. (2010). Direct generation of photon triplets using cascaded photon-pair sources. Nature, 466, 601–603.CrossRef
28.
Zurück zum Zitat Igor, B., et al. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B - Proceedings Supplements, 228, 63–135.CrossRef Igor, B., et al. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B - Proceedings Supplements, 228, 63–135.CrossRef
29.
Zurück zum Zitat Javadi, A., et al. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.CrossRef Javadi, A., et al. (2015). Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, 6, 8655.CrossRef
30.
Zurück zum Zitat Johnson, B. R. (2010, June 20). Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 6, 663–667.CrossRef Johnson, B. R. (2010, June 20). Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 6, 663–667.CrossRef
31.
Zurück zum Zitat Kaneda, F., et al. (2019). High-efficiency single-photon generation via large-scale active time multiplexing. Science Advances, 5(10), eaaw8586.CrossRef Kaneda, F., et al. (2019). High-efficiency single-photon generation via large-scale active time multiplexing. Science Advances, 5(10), eaaw8586.CrossRef
32.
Zurück zum Zitat Kevin, A., et al. (2017). Signatures of two-photon pulses from a quantum two-level system. Nature Physics, 3, 649–654. Kevin, A., et al. (2017). Signatures of two-photon pulses from a quantum two-level system. Nature Physics, 3, 649–654.
33.
Zurück zum Zitat Langford, K., et al. (2021). Efficient quantum computing using coherent photon conversion. Nature, 478, 360–363.CrossRef Langford, K., et al. (2021). Efficient quantum computing using coherent photon conversion. Nature, 478, 360–363.CrossRef
34.
Zurück zum Zitat Langer, L., et al. (2014). Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photonics, 8, 851–857.CrossRef Langer, L., et al. (2014). Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photonics, 8, 851–857.CrossRef
35.
Zurück zum Zitat Naghiloo, M., et al. (2016). Mapping quantum state dynamics in spontaneous emission. Nature Communications, 7, 11527.CrossRef Naghiloo, M., et al. (2016). Mapping quantum state dynamics in spontaneous emission. Nature Communications, 7, 11527.CrossRef
36.
Zurück zum Zitat Najjari, B., Voitkiv, A. B., Artemyev, A., & Surzhykov, A. (2009). Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Physical Review A, 80, 012701.CrossRef Najjari, B., Voitkiv, A. B., Artemyev, A., & Surzhykov, A. (2009). Simultaneous electron capture and bound-free pair production in relativistic collisions of heavy nuclei with atoms. Physical Review A, 80, 012701.CrossRef
37.
Zurück zum Zitat Reinhard, A., et al. (2012). Strongly correlated photons on a chip. Nature Photonics, 6, 93–96.CrossRef Reinhard, A., et al. (2012). Strongly correlated photons on a chip. Nature Photonics, 6, 93–96.CrossRef
38.
Zurück zum Zitat Reinhard, P., et al. (2021). Nuclear charge densities in spherical and deformed nuclei: Toward precise calculations of charge radii. Physical Review C, 103, 054310.CrossRef Reinhard, P., et al. (2021). Nuclear charge densities in spherical and deformed nuclei: Toward precise calculations of charge radii. Physical Review C, 103, 054310.CrossRef
39.
Zurück zum Zitat Shalm, L. K., et al. (2012). Three-photon energy–time entanglement. Nature Physics, 9, 19.CrossRef Shalm, L. K., et al. (2012). Three-photon energy–time entanglement. Nature Physics, 9, 19.CrossRef
40.
Zurück zum Zitat Szafron, R., & Czarnecki, A. (2016). High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753, 61–64.CrossRef Szafron, R., & Czarnecki, A. (2016). High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753, 61–64.CrossRef
41.
Zurück zum Zitat Tame, M. S., et al. (2013). Quantum plasmonics. Nature Physics, 9, 329–340.CrossRef Tame, M. S., et al. (2013). Quantum plasmonics. Nature Physics, 9, 329–340.CrossRef
42.
Zurück zum Zitat Ting, T. C. (2004). The polarization vector and secular equation for surface waves in an anisotropic elastic half-space. International Journal of Solids and Structures, 41, 2065–2083.MATHCrossRef Ting, T. C. (2004). The polarization vector and secular equation for surface waves in an anisotropic elastic half-space. International Journal of Solids and Structures, 41, 2065–2083.MATHCrossRef
43.
Zurück zum Zitat Stehle, C., Zimmermann, C., & Slama, S. (2014). Cooperative coupling of ultracold atoms and surface plasmons. Nature Physics, 10, 937.CrossRef Stehle, C., Zimmermann, C., & Slama, S. (2014). Cooperative coupling of ultracold atoms and surface plasmons. Nature Physics, 10, 937.CrossRef
44.
Zurück zum Zitat Prasad, A. S., Hinney, J., Mahmoodian, S., Hammerer, K., et al. (2020). Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nature Photonics, 14, 719–722.CrossRef Prasad, A. S., Hinney, J., Mahmoodian, S., Hammerer, K., et al. (2020). Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nature Photonics, 14, 719–722.CrossRef
45.
Zurück zum Zitat Lukas, H., Fischer, K. A., Appel, S., Lukin, D., et al. (2018). Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Information, 4, 43.CrossRef Lukas, H., Fischer, K. A., Appel, S., Lukin, D., et al. (2018). Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Information, 4, 43.CrossRef
46.
Zurück zum Zitat Liu, K., Hong, X., Zhou, Q., Jin, C., Li, J., Zhou, W., Liu, J., Wang, E., Zettl, A., & Wang, F. (2013). High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nature Nanotechnology, 8, 917.CrossRef Liu, K., Hong, X., Zhou, Q., Jin, C., Li, J., Zhou, W., Liu, J., Wang, E., Zettl, A., & Wang, F. (2013). High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nature Nanotechnology, 8, 917.CrossRef
47.
Zurück zum Zitat Broz, M., Contreras, J. G., & Tapia Takaki, J. D. (2020). A generator of forward neutrons for ultraperipheral collisions. Computer Physics Communications, 253, 107181.MathSciNetCrossRef Broz, M., Contreras, J. G., & Tapia Takaki, J. D. (2020). A generator of forward neutrons for ultraperipheral collisions. Computer Physics Communications, 253, 107181.MathSciNetCrossRef
48.
Zurück zum Zitat Jiaqi, L., Yi, Z., Chengkai, T., & Xingxing, Z. (2019). INS aided high dynamic single-satellite position algorithm. 2019 IEEE international conference on signal processing, communications and computing (ICSPCC). Jiaqi, L., Yi, Z., Chengkai, T., & Xingxing, Z. (2019). INS aided high dynamic single-satellite position algorithm. 2019 IEEE international conference on signal processing, communications and computing (ICSPCC).
49.
Zurück zum Zitat Wang, C., Wang, W., & Chen, Z. (2017). Single-satellite positioning algorithm based on direction-finding. 2017 progress in electromagnetics research symposium – Spring (PIERS). Wang, C., Wang, W., & Chen, Z. (2017). Single-satellite positioning algorithm based on direction-finding. 2017 progress in electromagnetics research symposium – Spring (PIERS).
50.
Zurück zum Zitat Gazi, V., & Passino, K. M. (2005). Stability of a one dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 35, 834.CrossRef Gazi, V., & Passino, K. M. (2005). Stability of a one dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 35, 834.CrossRef
51.
Zurück zum Zitat Berges, J., & Mesterházy, D. (2012). Introduction to the nonequilibrium functional renormalization group. Nuclear Physics B. Proceedings Supplements, 228, 37–60.MathSciNetCrossRef Berges, J., & Mesterházy, D. (2012). Introduction to the nonequilibrium functional renormalization group. Nuclear Physics B. Proceedings Supplements, 228, 37–60.MathSciNetCrossRef
53.
Zurück zum Zitat Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J. M., Tissier, M., & Wschebor, N. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1.MathSciNetMATHCrossRef Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J. M., Tissier, M., & Wschebor, N. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1.MathSciNetMATHCrossRef
54.
Zurück zum Zitat Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the Functional Renormalization Group. Nuclear Physics B - Proceedings Supplements, 228, 63.CrossRef Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the Functional Renormalization Group. Nuclear Physics B - Proceedings Supplements, 228, 63.CrossRef
55.
Zurück zum Zitat Bertozzi, E. (2010, November 1). Hunting the ghosts of a ‘strictly quantum field’: The Klein–Gordon equation. European Journal of Physics, 31(6), 1499.CrossRef Bertozzi, E. (2010, November 1). Hunting the ghosts of a ‘strictly quantum field’: The Klein–Gordon equation. European Journal of Physics, 31(6), 1499.CrossRef
57.
Zurück zum Zitat Tu, M. W., & Zhang, W. M. (2008). Non-Markovian decoherence theory for a double-dot charge qubit. Physical Review B, 78, 235311.CrossRef Tu, M. W., & Zhang, W. M. (2008). Non-Markovian decoherence theory for a double-dot charge qubit. Physical Review B, 78, 235311.CrossRef
58.
Zurück zum Zitat Viktor, J., et al. (2014). More on thermal probes of a strongly coupled anisotropic plasma. Journal of High Energy Physics, 2014, 149.CrossRef Viktor, J., et al. (2014). More on thermal probes of a strongly coupled anisotropic plasma. Journal of High Energy Physics, 2014, 149.CrossRef
59.
Zurück zum Zitat Wang, C. et al. (2017). Single-satellite positioning algorithm based on direction-finding. 2017 Progress in electromagnetics research symposium – Spring (PIERS). Wang, C. et al. (2017). Single-satellite positioning algorithm based on direction-finding. 2017 Progress in electromagnetics research symposium – Spring (PIERS).
60.
Zurück zum Zitat Waseem, S. B. (2011, December 12). Orbital excitation blockade and algorithmic cooling in quantum gases. Nature, 480(7378), 500–503.CrossRef Waseem, S. B. (2011, December 12). Orbital excitation blockade and algorithmic cooling in quantum gases. Nature, 480(7378), 500–503.CrossRef
Metadaten
Titel
Modeling of Global Climate Control
verfasst von
Md. Faruque Hossain
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34575-3_17