Skip to main content
Erschienen in: Journal of Materials Science 4/2014

01.02.2014

Modeling the growth kinetics of a multi-component stoichiometric compound

verfasst von: Haifeng Wang, Feng Liu, D. M. Herlach

Erschienen in: Journal of Materials Science | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The maximal entropy production principle was applied to model the growth kinetics of a multi-component stoichiometric compound. Compared with the solid-solution phase and the non-stoichiometric compound, the dissipation by the trans-interface diffusion makes the interface slow down by decreasing the effective interface mobility and does not result in solute trapping or disorder trapping. An application to the crystallization of a CuZr stoichiometric compound shows that the transition from the thermodynamic-controlled to the kinetic-controlled growth can be predicted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For the solid-solution phase, \( \Updelta g \) can be divided into the driving free energy for the interface migration \( \Updelta g_{\text{C}} \) and the trans-interface diffusion \( \Updelta g_{\text{D}} \) by moving the tangent of the solid curve at \( C_{\text{S}} \) to \( C_{\text{L}}^{ *} \) in the liquid curve [22]; please see the two parallel dotted lines in Fig. 1.
 
2
The driving free energy for each dissipation process cannot be self-derived by the MEPP for the nonlinear thermodynamics and needs to be prescribed by the TEP or the molar Gibbs energy diagram [34].
 
3
The Gibbs free energy as a function of the concentration follows the parabola function.
 
Literatur
1.
2.
4.
Zurück zum Zitat Krivilyov M, Volkmann T, Gao J et al (2012) Multiscale analysis of the effect of competitive nucleation on phase selection in rapid solidification of rare-earth ternary magnetic materials. Acta Mater 60:112–122CrossRef Krivilyov M, Volkmann T, Gao J et al (2012) Multiscale analysis of the effect of competitive nucleation on phase selection in rapid solidification of rare-earth ternary magnetic materials. Acta Mater 60:112–122CrossRef
6.
Zurück zum Zitat Hermann R, Bächer I (2000) Growth kinetics in undercooled Nd–Fe–B alloys with carbon and Ti or Mo additions. J Mag Mag Mater 213:82–86CrossRefADS Hermann R, Bächer I (2000) Growth kinetics in undercooled Nd–Fe–B alloys with carbon and Ti or Mo additions. J Mag Mag Mater 213:82–86CrossRefADS
7.
Zurück zum Zitat Heulens J, Blanpain B, Moelans N (2011) A phase field model for isothermal crystallization of oxide melts. Acta Mater 59:2156–2165CrossRef Heulens J, Blanpain B, Moelans N (2011) A phase field model for isothermal crystallization of oxide melts. Acta Mater 59:2156–2165CrossRef
9.
Zurück zum Zitat Li DY, Chen LQ (1998) Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al–Cu alloys. Acta Mater 46: 2573–2585 Li DY, Chen LQ (1998) Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al–Cu alloys. Acta Mater 46: 2573–2585
10.
Zurück zum Zitat Vaithyanathan V, Wolverton C, Chen LQ (2002) Multiscale modeling of precipitate microstructure evolution. Phys Rev Lett 88:125503PubMedCrossRefADS Vaithyanathan V, Wolverton C, Chen LQ (2002) Multiscale modeling of precipitate microstructure evolution. Phys Rev Lett 88:125503PubMedCrossRefADS
11.
Zurück zum Zitat Hu SY, Murray J, Weiland H et al (2007) Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach. Calphad 31:303–312CrossRef Hu SY, Murray J, Weiland H et al (2007) Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach. Calphad 31:303–312CrossRef
12.
Zurück zum Zitat Kim HS, Lee HJ, Yu YS et al (2009) Three-dimensional simulation of intermetallic compound layer growth in a binary alloy system. Acta Mater 57:1254–1262CrossRef Kim HS, Lee HJ, Yu YS et al (2009) Three-dimensional simulation of intermetallic compound layer growth in a binary alloy system. Acta Mater 57:1254–1262CrossRef
13.
Zurück zum Zitat Ramdan RD, Takaki T, Tomita Y (2008) Free energy problem for the simulations of the growth of Fe2B phase using phase-field method. Mater Trans 49:2625–2631CrossRef Ramdan RD, Takaki T, Tomita Y (2008) Free energy problem for the simulations of the growth of Fe2B phase using phase-field method. Mater Trans 49:2625–2631CrossRef
14.
Zurück zum Zitat Svoboda J, Gamsjäger E, Fischer FD (2006) Influence of diffusional stress relaxation on growth of stoichiometric precipitates in binary systems. Acta Mater 54:4575–4581CrossRef Svoboda J, Gamsjäger E, Fischer FD (2006) Influence of diffusional stress relaxation on growth of stoichiometric precipitates in binary systems. Acta Mater 54:4575–4581CrossRef
15.
Zurück zum Zitat Svoboda J, Fischer FD, Abart R (2011) Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases. Acta Mater 58:2905–2911CrossRef Svoboda J, Fischer FD, Abart R (2011) Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases. Acta Mater 58:2905–2911CrossRef
16.
Zurück zum Zitat Svoboda J, Fischer FD, Schillinger W (2013) Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: experiments and model. Acta Mater 61:32–39CrossRef Svoboda J, Fischer FD, Schillinger W (2013) Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: experiments and model. Acta Mater 61:32–39CrossRef
17.
Zurück zum Zitat Wang Q, Wang LM, Ma MZ et al (2011) Diffusion-controlled crystal growth in deeply undercooled melt on approaching the glass transition. Phys Rev B 83:014202CrossRefADS Wang Q, Wang LM, Ma MZ et al (2011) Diffusion-controlled crystal growth in deeply undercooled melt on approaching the glass transition. Phys Rev B 83:014202CrossRefADS
18.
Zurück zum Zitat Tang CG, Harrowell P (2013) Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat Mater 12:507–511PubMedCrossRefADS Tang CG, Harrowell P (2013) Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat Mater 12:507–511PubMedCrossRefADS
19.
Zurück zum Zitat Wang N, Kalay YE, Trivedi R (2011) Eutectic-to-metallic glass transition in the Al–Sm system. Acta Mater 59:6604–6619CrossRef Wang N, Kalay YE, Trivedi R (2011) Eutectic-to-metallic glass transition in the Al–Sm system. Acta Mater 59:6604–6619CrossRef
20.
Zurück zum Zitat Trivedi R, Wang N (2012) Theory of rod eutectic growth under far-from-equilibrium conditions: nanoscale spacing and transition to glass. Acta Mater 60:3140–3152CrossRef Trivedi R, Wang N (2012) Theory of rod eutectic growth under far-from-equilibrium conditions: nanoscale spacing and transition to glass. Acta Mater 60:3140–3152CrossRef
21.
Zurück zum Zitat Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537CrossRef Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537CrossRef
22.
Zurück zum Zitat Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater 47:4481–4505CrossRef Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater 47:4481–4505CrossRef
23.
Zurück zum Zitat Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRefADS Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRefADS
24.
Zurück zum Zitat Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRefADS Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRefADS
25.
Zurück zum Zitat Svoboda J, Fischer FD, Fratzl P et al (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef Svoboda J, Fischer FD, Fratzl P et al (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef
26.
Zurück zum Zitat Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRefADS Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRefADS
27.
Zurück zum Zitat Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam
28.
Zurück zum Zitat Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45MathSciNetCrossRefADS Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45MathSciNetCrossRefADS
29.
Zurück zum Zitat Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168CrossRefADS Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168CrossRefADS
30.
Zurück zum Zitat Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef
31.
Zurück zum Zitat Boettinger WJ, Aziz MJ (1989) Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification. Acta Mater 37:3379–3391CrossRef Boettinger WJ, Aziz MJ (1989) Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification. Acta Mater 37:3379–3391CrossRef
32.
Zurück zum Zitat Assadi H, Greer AL (1996) Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383:150–152CrossRefADS Assadi H, Greer AL (1996) Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383:150–152CrossRefADS
33.
Zurück zum Zitat Assadi H (2007) A phase-field model for non-equilibrium solidification of intermetallics. Acta Mater 55:5225–5235CrossRef Assadi H (2007) A phase-field model for non-equilibrium solidification of intermetallics. Acta Mater 55:5225–5235CrossRef
34.
Zurück zum Zitat Wang HF, Liu F, Zhai HM et al (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef Wang HF, Liu F, Zhai HM et al (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef
35.
Zurück zum Zitat Wang K, Wang HF, Liu F et al (2013) Modeling rapid solidification of multi-component concentrated alloys. Acta Mater 61:1359–1372CrossRef Wang K, Wang HF, Liu F et al (2013) Modeling rapid solidification of multi-component concentrated alloys. Acta Mater 61:1359–1372CrossRef
36.
Zurück zum Zitat Wang HF, Liu F, Ehlen GJ et al (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef Wang HF, Liu F, Ehlen GJ et al (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef
37.
Zurück zum Zitat Fischer FD, Simha NK (2004) Influence of material flux on the jump relations at a singular interface in a multicomponent solid. Acta Mech 171:213–223CrossRefMATH Fischer FD, Simha NK (2004) Influence of material flux on the jump relations at a singular interface in a multicomponent solid. Acta Mech 171:213–223CrossRefMATH
38.
Zurück zum Zitat Du Q, Perez M, Poole WJ et al (2012) Numerical integration of the Gibbs–Thomson equation for multicomponent systems. Scr Mater 66:419–422CrossRef Du Q, Perez M, Poole WJ et al (2012) Numerical integration of the Gibbs–Thomson equation for multicomponent systems. Scr Mater 66:419–422CrossRef
39.
Zurück zum Zitat Shahandeh S, Nategh S (2007) A computational thermodynamics approach to the Gibbs–Thomson effect. Mater Sci Eng A 443:178–184CrossRef Shahandeh S, Nategh S (2007) A computational thermodynamics approach to the Gibbs–Thomson effect. Mater Sci Eng A 443:178–184CrossRef
40.
Zurück zum Zitat Wang N, Li CR, Du ZM et al (2006) The thermodynamic re-assessment of the Cu–Zr system. Calphad 30:461–469CrossRef Wang N, Li CR, Du ZM et al (2006) The thermodynamic re-assessment of the Cu–Zr system. Calphad 30:461–469CrossRef
41.
Zurück zum Zitat Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709PubMedCrossRefADS Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709PubMedCrossRefADS
42.
Zurück zum Zitat Shun Y, Xi HM, Chen S et al (2008) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112:5594–5601CrossRef Shun Y, Xi HM, Chen S et al (2008) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112:5594–5601CrossRef
43.
Zurück zum Zitat Herlach DM (1994) Non-equilibrium solidification of undercooled metallic metals. Mater Sci Eng R 12:177–272CrossRef Herlach DM (1994) Non-equilibrium solidification of undercooled metallic metals. Mater Sci Eng R 12:177–272CrossRef
44.
Zurück zum Zitat Wang HF, Liu F, Chen Z et al (2007) Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application. Acta Mater 55:497–506CrossRef Wang HF, Liu F, Chen Z et al (2007) Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application. Acta Mater 55:497–506CrossRef
45.
Zurück zum Zitat Wang K, Wang HF, Liu F et al (2013) Modeling dendrite growth in undercooled concentrated multi-component alloys. Acta Mater 61:4254–4265CrossRef Wang K, Wang HF, Liu F et al (2013) Modeling dendrite growth in undercooled concentrated multi-component alloys. Acta Mater 61:4254–4265CrossRef
Metadaten
Titel
Modeling the growth kinetics of a multi-component stoichiometric compound
verfasst von
Haifeng Wang
Feng Liu
D. M. Herlach
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7835-2

Weitere Artikel der Ausgabe 4/2014

Journal of Materials Science 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.