Skip to main content
Erschienen in: Journal of Materials Science 4/2014

01.02.2014

Preparation of layered bioceramic hydroxyapatite/sodium titanate coatings on titanium substrates using a hybrid technique of alkali-heat treatment and electrochemical deposition

verfasst von: Jianglin Ouyang, Xuetong Sun, Xianshuai Chen, Jianyu Chen, Xiumei Zhuang

Erschienen in: Journal of Materials Science | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bioceramic hydroxyapatite/sodium titanate coating on sandblasted titanium substrate was fabricated by a three-step process. At first, the sandblasted titanium substrate was coated with a flake-like sodium titanate layer by alkali-heat treatment. In the second step, the alkali-heat treated titanium substrate was hydrothermal treated at 180 °C for 4 h with calcium solutions. In the third step, the hydroxyapatite (HA) coating was deposited onto the hydrothermal treated layer via electrochemical deposition method. The surface topography and roughness of the coatings were determined by field emission scanning electron microscope (FESEM) and a mechanical contact profilometer, respectively. The surface compositions were evaluated by X-ray diffraction (XRD), energy-dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). The EDS, XPS, and XRD analysis confirm the presence of element Ca, Ca2+, and CaTiO3 on sodium titanate layer after hydrothermal treatment with Ca(NO3)2 solution, respectively. FESEM micrograph shows the rod/needle-shaped crystallites are highly densely packed on the calcium-ion-containing layer with an average size of ~50 nm in diameter. The results indicate that the sodium titanate layer containing Ca2+ ions possesses higher ability to induce HA formation compared with the pure sodium titanate layer. It is revealed that surface composition plays an important role in the electrochemical deposition of HA. The calcium-ion-containing layer probably makes the nucleation of HA easy and effectively promotes orientated growth of HA on flake-like sodium titanate surface. The sodium titanate layer possesses a lower corrosion current density and a higher corrosion potential than sandblasted-Ti substrate. The sodium titanate layer should act as a barrier to the release of metal ions from metallic substrate to physiological solutions and thus reducing the electrochemical reaction rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jarmar T, Palmquist A, Branemark R, Hermansson L, Engqvist H, Thomsen P (2008) Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. Clin Implant Dent Relat Res 10:11–22PubMedCrossRef Jarmar T, Palmquist A, Branemark R, Hermansson L, Engqvist H, Thomsen P (2008) Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. Clin Implant Dent Relat Res 10:11–22PubMedCrossRef
2.
Zurück zum Zitat Palmquist A, Engqvist H, Lausmaa J, Thomsen P (2012) Commercially available dental implants: review of their surface characteristics. J Biomater Tissue Eng 2:112–124CrossRef Palmquist A, Engqvist H, Lausmaa J, Thomsen P (2012) Commercially available dental implants: review of their surface characteristics. J Biomater Tissue Eng 2:112–124CrossRef
3.
Zurück zum Zitat Chadwick EG, Clarkin OM, Tanner DA (2010) Hydroxyapatite formation on metallurgical grade nanoporous silicon particles. J Mater Sci 45:6562–6568CrossRefADS Chadwick EG, Clarkin OM, Tanner DA (2010) Hydroxyapatite formation on metallurgical grade nanoporous silicon particles. J Mater Sci 45:6562–6568CrossRefADS
4.
Zurück zum Zitat Kwok CT, Wong PK, Cheng FT, Man HC (2009) Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci 255:6736–6744CrossRefADS Kwok CT, Wong PK, Cheng FT, Man HC (2009) Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci 255:6736–6744CrossRefADS
5.
Zurück zum Zitat Huang Y, Yan YJ, Pang XF (2013) Electrolytic deposition of fluorine-doped hydroxyapatite/ZrO2 films on titanium for biomedical applications. Ceram Int 39:245–253CrossRef Huang Y, Yan YJ, Pang XF (2013) Electrolytic deposition of fluorine-doped hydroxyapatite/ZrO2 films on titanium for biomedical applications. Ceram Int 39:245–253CrossRef
6.
Zurück zum Zitat Wu C, Ramaswamy Y, Liu X, Wang G, Zreiqat H (2009) Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. J R Soc Interface 6:159–168PubMedCrossRefPubMedCentral Wu C, Ramaswamy Y, Liu X, Wang G, Zreiqat H (2009) Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. J R Soc Interface 6:159–168PubMedCrossRefPubMedCentral
7.
Zurück zum Zitat Huang Y, Ding QQ, Pang XF (2013) Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings. Appl Surf Sci 282:456–562CrossRefADS Huang Y, Ding QQ, Pang XF (2013) Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings. Appl Surf Sci 282:456–562CrossRefADS
8.
Zurück zum Zitat Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 25:2533–2538PubMedCrossRef Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 25:2533–2538PubMedCrossRef
9.
Zurück zum Zitat Melinte G, Baia L, Simon V, Simon S (2011) Hydrogen peroxide versus water synthesis of bioglass–nanocrystalline hydroxyapatite composites. J Mater Sci 46:7393–7400CrossRefADS Melinte G, Baia L, Simon V, Simon S (2011) Hydrogen peroxide versus water synthesis of bioglass–nanocrystalline hydroxyapatite composites. J Mater Sci 46:7393–7400CrossRefADS
10.
Zurück zum Zitat Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645CrossRefADS Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645CrossRefADS
11.
Zurück zum Zitat Duan K, Wang R (2006) Surface modifications of bone implants through wet chemistry. J Mater Chem 16:230–239 Duan K, Wang R (2006) Surface modifications of bone implants through wet chemistry. J Mater Chem 16:230–239
12.
Zurück zum Zitat Huang Y, Han SG, Pang XF (2013) Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci 271:299–302CrossRefADS Huang Y, Han SG, Pang XF (2013) Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci 271:299–302CrossRefADS
13.
Zurück zum Zitat He G, Hu J, Wei SC, Li JH, Liang XH, Luo E (2008) Surface modification of titanium by nano-TiO2/HA bioceramic coating. Appl Surf Sci 255:442–445CrossRefADS He G, Hu J, Wei SC, Li JH, Liang XH, Luo E (2008) Surface modification of titanium by nano-TiO2/HA bioceramic coating. Appl Surf Sci 255:442–445CrossRefADS
14.
Zurück zum Zitat Huang Y, Ding QQ, Pang XF (2013) Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci 24:1853–1864. doi:10.1007/s10856-013-4955-9 Huang Y, Ding QQ, Pang XF (2013) Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci 24:1853–1864. doi:10.​1007/​s10856-013-4955-9
15.
Zurück zum Zitat Alexandre AR, Rodrigo FC et al (2009) Hydroxyapatite deposition study through polymeric process on commercially pure Ti surfaces modified by laser beam irradiation. J Mater Sci 44:4056–4061. doi:10.1007/s10853-009-3585-6 CrossRef Alexandre AR, Rodrigo FC et al (2009) Hydroxyapatite deposition study through polymeric process on commercially pure Ti surfaces modified by laser beam irradiation. J Mater Sci 44:4056–4061. doi:10.​1007/​s10853-009-3585-6 CrossRef
16.
Zurück zum Zitat Singh G, Singh H, Sidhu BS (2013) Characterization and corrosion resistance of plasma sprayed HA and HA-SiO2 coatings on Ti-6Al-4V. Surf Coat Technol 228:242–247CrossRef Singh G, Singh H, Sidhu BS (2013) Characterization and corrosion resistance of plasma sprayed HA and HA-SiO2 coatings on Ti-6Al-4V. Surf Coat Technol 228:242–247CrossRef
17.
Zurück zum Zitat Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 26:327–337PubMedCrossRefADS Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 26:327–337PubMedCrossRefADS
18.
Zurück zum Zitat Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L (2005) Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26:4085–4089PubMedCrossRef Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L (2005) Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26:4085–4089PubMedCrossRef
19.
Zurück zum Zitat Choudhury P, Agrawal DC (2011) Sol-gel derived hydroxyapatite coatings on titanium substrates. Surf Coat Technol 206:360–365CrossRef Choudhury P, Agrawal DC (2011) Sol-gel derived hydroxyapatite coatings on titanium substrates. Surf Coat Technol 206:360–365CrossRef
20.
Zurück zum Zitat Yang CC, Huang CY, Lin CC, Yen SK (2011) Electrolytic deposition of collagen/HA composite on post HA/TiO2 coated Ti6Al4V implant alloy. J Electrochem Soc 158:E13CrossRef Yang CC, Huang CY, Lin CC, Yen SK (2011) Electrolytic deposition of collagen/HA composite on post HA/TiO2 coated Ti6Al4V implant alloy. J Electrochem Soc 158:E13CrossRef
21.
Zurück zum Zitat Jain P, Mandal T, Prakash P, Garg A, Balani K (2012) Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate. J Coat Technol Res 10:263–275CrossRef Jain P, Mandal T, Prakash P, Garg A, Balani K (2012) Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate. J Coat Technol Res 10:263–275CrossRef
22.
Zurück zum Zitat Huang Y, Yan YJ, Pang XF (2013) Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating. Appl Surf Sci 282:583–589CrossRefADS Huang Y, Yan YJ, Pang XF (2013) Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating. Appl Surf Sci 282:583–589CrossRefADS
23.
Zurück zum Zitat Montero-Ocampo C, Villegas D, Veleva L (2005) Controlled potential electrodeposition of calcium Phosphate on Ti6Al4V. J Electrochem Soc 152:C692CrossRef Montero-Ocampo C, Villegas D, Veleva L (2005) Controlled potential electrodeposition of calcium Phosphate on Ti6Al4V. J Electrochem Soc 152:C692CrossRef
24.
Zurück zum Zitat BS ISO 13779-2 (2000) Implants for surgery-hydroxyapatite-part 2: coatings of hydroxyapatite. British Standards Institution, London BS ISO 13779-2 (2000) Implants for surgery-hydroxyapatite-part 2: coatings of hydroxyapatite. British Standards Institution, London
25.
Zurück zum Zitat Lee YH, Bhattarai G, Aryal S, Lee NH, Lee MH, Kim TG, Jhee EC, Kim HY, Yi HK (2010) Modified titanium surface with gelatin nano-gold composite increases osteoblast cell biocompatibility. Appl Surf Sci 256:5882–5887CrossRefADS Lee YH, Bhattarai G, Aryal S, Lee NH, Lee MH, Kim TG, Jhee EC, Kim HY, Yi HK (2010) Modified titanium surface with gelatin nano-gold composite increases osteoblast cell biocompatibility. Appl Surf Sci 256:5882–5887CrossRefADS
26.
Zurück zum Zitat Wu S, Liu X, Chan YL, Chung CY, Chu PK, Chu CL, Lam KO, Yeung KWK, Lu WW, Luk KDK, Cheung KMC (2008) In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing. Surf Coat Technol 202:2458–2462CrossRef Wu S, Liu X, Chan YL, Chung CY, Chu PK, Chu CL, Lam KO, Yeung KWK, Lu WW, Luk KDK, Cheung KMC (2008) In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing. Surf Coat Technol 202:2458–2462CrossRef
27.
Zurück zum Zitat Zhao X, Li H, Chen M, Li K, Lu J, Zhang L, Cao S (2012) Nano/micro-sized calcium phosphate coating on carbon/carbon composites by ultrasonic assisted electrochemical deposition. Surf Interface Anal 44:21–28CrossRef Zhao X, Li H, Chen M, Li K, Lu J, Zhang L, Cao S (2012) Nano/micro-sized calcium phosphate coating on carbon/carbon composites by ultrasonic assisted electrochemical deposition. Surf Interface Anal 44:21–28CrossRef
28.
Zurück zum Zitat Mondragon-Cortez P, Vargas-Gutierrez G (2004) Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett 58:1336–1339CrossRef Mondragon-Cortez P, Vargas-Gutierrez G (2004) Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett 58:1336–1339CrossRef
29.
Zurück zum Zitat Niederauer GG, McGee TD, Keller JC, Zaharias RS (1994) Attachment of epithelial cells and fibroblasts to ceramic materials. Biomaterials 15:342–352PubMedCrossRef Niederauer GG, McGee TD, Keller JC, Zaharias RS (1994) Attachment of epithelial cells and fibroblasts to ceramic materials. Biomaterials 15:342–352PubMedCrossRef
30.
Zurück zum Zitat Redey SA, Nardin M, Bernache-Assolant D, Rey C, Delannoy P, Sedel L, Marie PJ (2000) Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J Biomed Mater Res 50:353–364PubMedCrossRef Redey SA, Nardin M, Bernache-Assolant D, Rey C, Delannoy P, Sedel L, Marie PJ (2000) Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J Biomed Mater Res 50:353–364PubMedCrossRef
Metadaten
Titel
Preparation of layered bioceramic hydroxyapatite/sodium titanate coatings on titanium substrates using a hybrid technique of alkali-heat treatment and electrochemical deposition
verfasst von
Jianglin Ouyang
Xuetong Sun
Xianshuai Chen
Jianyu Chen
Xiumei Zhuang
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7879-3

Weitere Artikel der Ausgabe 4/2014

Journal of Materials Science 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.