Skip to main content
Erschienen in: Journal of Materials Science 4/2016

01.02.2016 | HTC 2015

Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation

verfasst von: G. Kaptay

Erschienen in: Journal of Materials Science | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Butler equation is extended to model equilibrium grain boundary (GB) energy and the equilibrium GB composition of a polycrystal, as a function of the following state parameters: bulk composition, temperature, pressure and the five degrees of freedom of the GB. In the simplest case of an ideal solution and equal atomic sizes of the components, the Butler equation reduces back to the well-known McLean equation of GB segregation. When the components repulse each other in the solid solution, grain boundary segregation transition (GBST) appears below the critical temperature of the bulk solid miscibility gap. The GBST line is a new equilibrium line in equilibrium phase diagrams. This new model is demonstrated for copper (Cu) segregation to the GBs in nickel (Ni) and for the phosphorous (P) segregation to the GBs in bcc iron (Fe). The GBST line appears in the Ni-rich (Fe-rich) corner of the Ni–Cu (Fe–P) phase diagram in coordinates of bulk Cu (P) mole fraction vs temperature at fixed pressure. The mole fraction of the solute (Cu or P), corresponding to the GBST line steadily increases with temperature. At a lower solute content (Cu or P), or at a higher temperature compared to the GBST line, the GB is composed mostly of the solvent atoms (Ni or Fe). Contrariwise, at a higher solute content (Cu or P), or at a lower temperature compared to the GBST line, the GB is composed mostly of the solute atoms (Cu or P). These low-segregation and high-segregation states of the GB are transformed into each other via a reversible first-order GBST. This latter process takes place when the GBST line is crossed by changing the bulk composition or the temperature. The results, theoretically estimated, are in agreement with earlier experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Straumal AB, Yardley VA, Straumal BB, Rodin AO (2015) Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu-In system. J Mater Sci 50:4762–4771. doi:10.1007/s10853-015-9025-x CrossRef Straumal AB, Yardley VA, Straumal BB, Rodin AO (2015) Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu-In system. J Mater Sci 50:4762–4771. doi:10.​1007/​s10853-015-9025-x CrossRef
3.
Zurück zum Zitat Wharry JP, Was GS (2014) The mechanism of radiation-induced segregation in ferritic martensitic alloys. Acta Mater 65:42–55CrossRef Wharry JP, Was GS (2014) The mechanism of radiation-induced segregation in ferritic martensitic alloys. Acta Mater 65:42–55CrossRef
4.
Zurück zum Zitat Hegedus Z, Gubicza J, Kawasaki M, Chinh NQ, Labar JL, Langdon TG (2013) Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. J Mater Sci 48:4637–4645. doi:10.1007/s10853-012-7124-5 CrossRef Hegedus Z, Gubicza J, Kawasaki M, Chinh NQ, Labar JL, Langdon TG (2013) Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. J Mater Sci 48:4637–4645. doi:10.​1007/​s10853-012-7124-5 CrossRef
5.
Zurück zum Zitat Menyhard M (1992) Effect of phosphorus on non-brittle grain boundaries of iron. Scr Metall Mater 26:1695–1700CrossRef Menyhard M (1992) Effect of phosphorus on non-brittle grain boundaries of iron. Scr Metall Mater 26:1695–1700CrossRef
6.
Zurück zum Zitat Lejcek P (2010) Grain boundary segregation in metals, vol 136., Springer Series in Materials ScienceSpringer, Berlin Lejcek P (2010) Grain boundary segregation in metals, vol 136., Springer Series in Materials ScienceSpringer, Berlin
7.
Zurück zum Zitat Gibbs JW (1875–1878) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 3:108–248 and 343–524 Gibbs JW (1875–1878) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 3:108–248 and 343–524
8.
Zurück zum Zitat Langmuir I (1918) The adsorption of gases on plate surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef Langmuir I (1918) The adsorption of gases on plate surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef
9.
Zurück zum Zitat McLean D (1957) Grain boundaries in metals. Clarendon Press, Oxford McLean D (1957) Grain boundaries in metals. Clarendon Press, Oxford
10.
Zurück zum Zitat Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge
11.
Zurück zum Zitat Guttmann M (1975) Equilibrium segregation in ternary solutions: a model for temper embrittlement. Surf Sci 53:213–227CrossRef Guttmann M (1975) Equilibrium segregation in ternary solutions: a model for temper embrittlement. Surf Sci 53:213–227CrossRef
12.
Zurück zum Zitat Seah MP, Lea C (1975) Surface segregation and its relation to grain boundary segregation. Philos Mag 31:627–645CrossRef Seah MP, Lea C (1975) Surface segregation and its relation to grain boundary segregation. Philos Mag 31:627–645CrossRef
13.
Zurück zum Zitat Wynblatt P, Ku RC (1977) Surface energy and solute strain energy effects in surface segregation. Surf Sci 65:511–531CrossRef Wynblatt P, Ku RC (1977) Surface energy and solute strain energy effects in surface segregation. Surf Sci 65:511–531CrossRef
14.
Zurück zum Zitat Miedema AR (1978) Surface energies of solid metals. Z Metallkunde 69:287–292 Miedema AR (1978) Surface energies of solid metals. Z Metallkunde 69:287–292
15.
Zurück zum Zitat Kumar V (1981) Chemical composition at alloy surfaces. Phys Rev B 23:3756CrossRef Kumar V (1981) Chemical composition at alloy surfaces. Phys Rev B 23:3756CrossRef
16.
Zurück zum Zitat Mezey LZ, Giber J (1985) New, simple rules of interface segregation. Surf Sci 162:514–518CrossRef Mezey LZ, Giber J (1985) New, simple rules of interface segregation. Surf Sci 162:514–518CrossRef
17.
Zurück zum Zitat Mukherjee S, Morán-López JL (1987) Theory of surface segregation in transition metal alloys. Surf Sci 188:L742–L748CrossRef Mukherjee S, Morán-López JL (1987) Theory of surface segregation in transition metal alloys. Surf Sci 188:L742–L748CrossRef
18.
Zurück zum Zitat Luthra KL, Briant CL (1988) Thermodynamics of segregation in alloys. Metall Trans A 19:2091–2098CrossRef Luthra KL, Briant CL (1988) Thermodynamics of segregation in alloys. Metall Trans A 19:2091–2098CrossRef
19.
Zurück zum Zitat Sutton AP, Balluffi RF (1995) Interfaces in crystalline materials. Clarendon, Oxford, p 349 Sutton AP, Balluffi RF (1995) Interfaces in crystalline materials. Clarendon, Oxford, p 349
20.
Zurück zum Zitat Berthier F, Creuze J, Tetot R, Legrand B (2002) Multilayer properties of superficial and intergranular segregation isotherms: a mean-field approach. Phys Rev B 65:195413CrossRef Berthier F, Creuze J, Tetot R, Legrand B (2002) Multilayer properties of superficial and intergranular segregation isotherms: a mean-field approach. Phys Rev B 65:195413CrossRef
21.
Zurück zum Zitat Esin VA, Souhar Y (2014) Solvent grain boundary diffusion in binary solid solutions: a new approach to evaluate solute grain boundary segregation. Philos Mag 94:4066–4079CrossRef Esin VA, Souhar Y (2014) Solvent grain boundary diffusion in binary solid solutions: a new approach to evaluate solute grain boundary segregation. Philos Mag 94:4066–4079CrossRef
22.
Zurück zum Zitat Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc A135:348–375CrossRef Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc A135:348–375CrossRef
23.
Zurück zum Zitat Hoar TP, Melford DA (1957) The surface tension of binary liquid mixtures: lead + tin and lead + indium alloys. Trans Faraday Soc 53:315–326CrossRef Hoar TP, Melford DA (1957) The surface tension of binary liquid mixtures: lead + tin and lead + indium alloys. Trans Faraday Soc 53:315–326CrossRef
24.
Zurück zum Zitat Monma K, Suto H (1961) Thermodynamics of surface tension. J Jpn Inst Met 25:65–68 Monma K, Suto H (1961) Thermodynamics of surface tension. J Jpn Inst Met 25:65–68
25.
Zurück zum Zitat Hondros ED (1980) Rule for surface enrichment in solutions. Scr Metall 14:345–348CrossRef Hondros ED (1980) Rule for surface enrichment in solutions. Scr Metall 14:345–348CrossRef
26.
Zurück zum Zitat Speiser R, Poirier DR, Yeum K (1987) Surface tension of binary liquid alloys. Scr Metall 21:687–692CrossRef Speiser R, Poirier DR, Yeum K (1987) Surface tension of binary liquid alloys. Scr Metall 21:687–692CrossRef
27.
Zurück zum Zitat Hajra JP, Lee HK, Frohberg MG (1991) Calculation of the surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z Metallkunde 82:603–608 Hajra JP, Lee HK, Frohberg MG (1991) Calculation of the surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z Metallkunde 82:603–608
28.
Zurück zum Zitat Tanaka T, Hack K, Iida T, Hara S (1996) Application of a thermodynamic database to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Z Metallkunde 87:380–389 Tanaka T, Hack K, Iida T, Hara S (1996) Application of a thermodynamic database to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Z Metallkunde 87:380–389
29.
Zurück zum Zitat Gasior W, Moser Z, Pstrus J (2001) Density and surface tension of the Pb-Sn liquid alloys. J Phase Equilib 22:20–25CrossRef Gasior W, Moser Z, Pstrus J (2001) Density and surface tension of the Pb-Sn liquid alloys. J Phase Equilib 22:20–25CrossRef
30.
Zurück zum Zitat Liu XJ, Inohana Y, Takaku Y, Ohnuma I, Kainuma R, Ishida K, Moser Z, Gasior W, Pstrus J (2002) Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system. J Electron Mater 31:1139–1151CrossRef Liu XJ, Inohana Y, Takaku Y, Ohnuma I, Kainuma R, Ishida K, Moser Z, Gasior W, Pstrus J (2002) Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system. J Electron Mater 31:1139–1151CrossRef
31.
Zurück zum Zitat Picha R, Vrestal J, Kroupa A (2004) Prediction of alloy surface tension using a thermodynamic database. Calphad 28:141–146CrossRef Picha R, Vrestal J, Kroupa A (2004) Prediction of alloy surface tension using a thermodynamic database. Calphad 28:141–146CrossRef
32.
Zurück zum Zitat Lee J, Park J, Tanaka T (2009) Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model. Calphad 33:377–381CrossRef Lee J, Park J, Tanaka T (2009) Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model. Calphad 33:377–381CrossRef
34.
Zurück zum Zitat Garzel G, Janczak-Rusch J, Zabdyr L (2012) Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect. Calphad 36:52–56CrossRef Garzel G, Janczak-Rusch J, Zabdyr L (2012) Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect. Calphad 36:52–56CrossRef
35.
Zurück zum Zitat Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. Calphad 45:33–39CrossRef Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. Calphad 45:33–39CrossRef
36.
Zurück zum Zitat Kambolov DA, Kashezhev AZ, Kutuev RA, Ponegev MKh, Sozaev VA, Kh Shermetov A (2014) Polytherms of the density and surface tension of a zinc-aluminium-molybdenum-magnesium melt. Bull Russ Acad Sci Phys 78:785–787CrossRef Kambolov DA, Kashezhev AZ, Kutuev RA, Ponegev MKh, Sozaev VA, Kh Shermetov A (2014) Polytherms of the density and surface tension of a zinc-aluminium-molybdenum-magnesium melt. Bull Russ Acad Sci Phys 78:785–787CrossRef
37.
Zurück zum Zitat Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R (2014) Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J Chem Eng Data 59:757–763CrossRef Plevachuk Y, Sklyarchuk V, Eckert S, Gerbeth G, Novakovic R (2014) Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J Chem Eng Data 59:757–763CrossRef
38.
Zurück zum Zitat Costa C, Delsante S, Borzone G, Zivkovic D, Novakovic R (2014) Thermodynamic and surface properties of liquid Co–Cr–Ni alloys. J Chem Thermodyn 69:73–84CrossRef Costa C, Delsante S, Borzone G, Zivkovic D, Novakovic R (2014) Thermodynamic and surface properties of liquid Co–Cr–Ni alloys. J Chem Thermodyn 69:73–84CrossRef
39.
Zurück zum Zitat Kang YB (2015) Relationship between surface tension and Gibbs energy, and application of constrained Gibbs energy minimization. Calphad 50:23–31CrossRef Kang YB (2015) Relationship between surface tension and Gibbs energy, and application of constrained Gibbs energy minimization. Calphad 50:23–31CrossRef
40.
Zurück zum Zitat Kaptay G (2015) On the partial surface tension of components of a solution. Langmuir 31:5796–5804CrossRef Kaptay G (2015) On the partial surface tension of components of a solution. Langmuir 31:5796–5804CrossRef
41.
Zurück zum Zitat Kaptay G (2012) On the interfacial energy of coherent interfaces. Acta Mater 60:6804–6813CrossRef Kaptay G (2012) On the interfacial energy of coherent interfaces. Acta Mater 60:6804–6813CrossRef
43.
Zurück zum Zitat Weltsch Z, Lovas A, Takács J, Cziráki Á, Tóth A, Kaptay G (2013) Measurement and modelling of the wettability of graphite by a silver-tin (Ag-Sn) liquid alloy. Appl Surf Sci 268:52–60CrossRef Weltsch Z, Lovas A, Takács J, Cziráki Á, Tóth A, Kaptay G (2013) Measurement and modelling of the wettability of graphite by a silver-tin (Ag-Sn) liquid alloy. Appl Surf Sci 268:52–60CrossRef
44.
Zurück zum Zitat Kaptay G (2005) A method to calculate equilibrium surface phase transition lines in monotectic systems. Calphad 29:56–67 and p. 262 Kaptay G (2005) A method to calculate equilibrium surface phase transition lines in monotectic systems. Calphad 29:56–67 and p. 262
45.
Zurück zum Zitat Mekler C, Kaptay G (2008) Calculation of surface tension and surface phase transition line in binary Ga-Tl system. Mater Sci Eng A 495:65–69CrossRef Mekler C, Kaptay G (2008) Calculation of surface tension and surface phase transition line in binary Ga-Tl system. Mater Sci Eng A 495:65–69CrossRef
46.
Zurück zum Zitat Sándor T, Mekler C, Dobránszky J, Kaptay G (2013) An improved theoretical model for A-TIG welding based on surface phase transition and reversed Marangoni flow. Metall Mater Trans 44A:351–361CrossRef Sándor T, Mekler C, Dobránszky J, Kaptay G (2013) An improved theoretical model for A-TIG welding based on surface phase transition and reversed Marangoni flow. Metall Mater Trans 44A:351–361CrossRef
47.
Zurück zum Zitat Vegh A, Mekler C, Kaptay G (2013) A unified theoretical framework to model bulk, surface and interfacial thermodynamic properties of immiscible liquid alloys. Mater Sci Forum 752:10–19CrossRef Vegh A, Mekler C, Kaptay G (2013) A unified theoretical framework to model bulk, surface and interfacial thermodynamic properties of immiscible liquid alloys. Mater Sci Forum 752:10–19CrossRef
48.
Zurück zum Zitat Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:6208–6218CrossRef Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Complexion: a new concept for kinetic engineering in materials science. Acta Mater 55:6208–6218CrossRef
49.
Zurück zum Zitat Carter WC, Baram M, Drozdov M, Kaplan WD (2010) Four questions about triple lines. Scr Mater 62:894–898CrossRef Carter WC, Baram M, Drozdov M, Kaplan WD (2010) Four questions about triple lines. Scr Mater 62:894–898CrossRef
51.
Zurück zum Zitat Baram M, Chatain D, Kaplan WD (2011) Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics. Science 332:206–209CrossRef Baram M, Chatain D, Kaplan WD (2011) Nanometer-thick equilibrium films: the interface between thermodynamics and atomistics. Science 332:206–209CrossRef
53.
Zurück zum Zitat Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48:5681–5717. doi:10.1007/s10853-013-7462-y CrossRef Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48:5681–5717. doi:10.​1007/​s10853-013-7462-y CrossRef
54.
Zurück zum Zitat Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Comm 4:1899CrossRef Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Comm 4:1899CrossRef
55.
Zurück zum Zitat Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions (Overview No. 152). Acta Mater 62:1–48CrossRef Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions (Overview No. 152). Acta Mater 62:1–48CrossRef
56.
Zurück zum Zitat Frolov T (2014) Effect of interfacial structural phase transformations on the coupled motion of grain boundaries: a molecular dynamics study. Appl Phys Lett 104:211905CrossRef Frolov T (2014) Effect of interfacial structural phase transformations on the coupled motion of grain boundaries: a molecular dynamics study. Appl Phys Lett 104:211905CrossRef
57.
Zurück zum Zitat Hondros ED, Seah MP (1977) The theory of grain boundary segregation in terms of surface adsorption analogues. Metal Trans A 8A:1363–1371CrossRef Hondros ED, Seah MP (1977) The theory of grain boundary segregation in terms of surface adsorption analogues. Metal Trans A 8A:1363–1371CrossRef
58.
Zurück zum Zitat Guttmann M (1977) Grain boundary segregation, two dimensional compound formation and precipitation. Metal Trans A 8A:1383–1401CrossRef Guttmann M (1977) Grain boundary segregation, two dimensional compound formation and precipitation. Metal Trans A 8A:1383–1401CrossRef
59.
Zurück zum Zitat Rabkin EI, Shvindlerman LS, Straumal BB (1990) Wetting and premelting phase transitions in 43° (100) tilt grain boundaries in Fe-5 at.% Si. Coll Phys 51:599–603 Rabkin EI, Shvindlerman LS, Straumal BB (1990) Wetting and premelting phase transitions in 43° (100) tilt grain boundaries in Fe-5 at.% Si. Coll Phys 51:599–603
60.
Zurück zum Zitat Rabkin EI, Shvindlerman LS, Straumal BB (1991) Grain boundaries: phase transitions and critical phenomena. Intern J Mod Phys B 5:2989–3028CrossRef Rabkin EI, Shvindlerman LS, Straumal BB (1991) Grain boundaries: phase transitions and critical phenomena. Intern J Mod Phys B 5:2989–3028CrossRef
61.
Zurück zum Zitat Bokstein BS, Rodin AO, Smirnov AN (2004) Connection between Fe grain boundary segregation in Al and phase formation in the bulk. Z Metallkde 95:953–955CrossRef Bokstein BS, Rodin AO, Smirnov AN (2004) Connection between Fe grain boundary segregation in Al and phase formation in the bulk. Z Metallkde 95:953–955CrossRef
62.
Zurück zum Zitat Wynblatt P, Chatain D (2006) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans 37A:2595–2620CrossRef Wynblatt P, Chatain D (2006) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans 37A:2595–2620CrossRef
63.
Zurück zum Zitat Lejcek P, Hofmann S (2008) Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction. Crit Rev Solid State Mater Sci 33:133–163CrossRef Lejcek P, Hofmann S (2008) Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction. Crit Rev Solid State Mater Sci 33:133–163CrossRef
64.
Zurück zum Zitat Straumal BB (2003) Grain boundary phase transitions (in Russian). Nauka, Moscow Straumal BB (2003) Grain boundary phase transitions (in Russian). Nauka, Moscow
65.
Zurück zum Zitat Weismüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef Weismüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef
66.
Zurück zum Zitat Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef
67.
Zurück zum Zitat Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef
69.
Zurück zum Zitat Pellicer E, Varea A, Sivaraman KM, Pane S, Surinach S, Baro MD, Nogues J, Nelson BJ, Sort J (2011) Grain boundary segregation and interdiffusion effects in the nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel ACS Appl. Mater Interfaces 3:2265–2274CrossRef Pellicer E, Varea A, Sivaraman KM, Pane S, Surinach S, Baro MD, Nogues J, Nelson BJ, Sort J (2011) Grain boundary segregation and interdiffusion effects in the nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel ACS Appl. Mater Interfaces 3:2265–2274CrossRef
70.
Zurück zum Zitat Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 23:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 23:951–954CrossRef
71.
Zurück zum Zitat Saber M, Koch CC, Scattergold RO (2015) Thermodynamic grain size stabilization models: overview. Mater Res Lett 3:65–75CrossRef Saber M, Koch CC, Scattergold RO (2015) Thermodynamic grain size stabilization models: overview. Mater Res Lett 3:65–75CrossRef
72.
Zurück zum Zitat Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Proc Am Acad Arts Sci 43:259–293CrossRef Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Proc Am Acad Arts Sci 43:259–293CrossRef
73.
Zurück zum Zitat Saunders N, Miodownik AP (1998) CALPHAD, a comprehensive guide. Pergamon, London Saunders N, Miodownik AP (1998) CALPHAD, a comprehensive guide. Pergamon, London
74.
Zurück zum Zitat Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics. The Calphad method. Cambridge University Press, CambridgeCrossRef Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics. The Calphad method. Cambridge University Press, CambridgeCrossRef
75.
Zurück zum Zitat Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford
76.
Zurück zum Zitat Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A 495:19–26 and 501:255 Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A 495:19–26 and 501:255
77.
Zurück zum Zitat Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267–276CrossRef Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267–276CrossRef
78.
Zurück zum Zitat Kaptay G (2005) Modeling interfacial energies in metallic systems. Mater Sci Forum 473–474:1–10CrossRef Kaptay G (2005) Modeling interfacial energies in metallic systems. Mater Sci Forum 473–474:1–10CrossRef
79.
80.
Zurück zum Zitat Topuridze NI, Hantadze DV (1978) On a geometric factor of the excess volume of a solution (in Russian). Zh Fiz Himii LII:81–84 Topuridze NI, Hantadze DV (1978) On a geometric factor of the excess volume of a solution (in Russian). Zh Fiz Himii LII:81–84
81.
Zurück zum Zitat Kaptay G (2014) On the abilities and limitations of the linear, exponential and combined models to describe the temperature dependence of the excess Gibbs energy of solutions. Calphad 44:81–94CrossRef Kaptay G (2014) On the abilities and limitations of the linear, exponential and combined models to describe the temperature dependence of the excess Gibbs energy of solutions. Calphad 44:81–94CrossRef
82.
Zurück zum Zitat Wandelt K, Brundle CR (1981) Evidence for crystal-face specificity in surface segregation of CuNi alloys. Phys Rev Lett 46:1529–1532CrossRef Wandelt K, Brundle CR (1981) Evidence for crystal-face specificity in surface segregation of CuNi alloys. Phys Rev Lett 46:1529–1532CrossRef
83.
Zurück zum Zitat Abrikosov IA, Skriver HL (1993) Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys. Phys Rev B 47:16532–16541CrossRef Abrikosov IA, Skriver HL (1993) Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys. Phys Rev B 47:16532–16541CrossRef
84.
Zurück zum Zitat Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad SM, Ganguli AK (2008) Bimetallic Cu–Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloid Surf A 331:206–212CrossRef Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad SM, Ganguli AK (2008) Bimetallic Cu–Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloid Surf A 331:206–212CrossRef
85.
Zurück zum Zitat Kolobov YuR, Grabovetskaya GP, Ivanov MB, Zhilayev AP, Valiev RZ (2001) Grain boundary diffusion characteristics of nanostructured nickel. Scr Mater 44:873–878CrossRef Kolobov YuR, Grabovetskaya GP, Ivanov MB, Zhilayev AP, Valiev RZ (2001) Grain boundary diffusion characteristics of nanostructured nickel. Scr Mater 44:873–878CrossRef
86.
Zurück zum Zitat Bokstein BS, Bröse HD, Trusov LJ, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. NanoStruct Mater 6:873–876CrossRef Bokstein BS, Bröse HD, Trusov LJ, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. NanoStruct Mater 6:873–876CrossRef
87.
Zurück zum Zitat Baró MD, Kolobov YuV, Ovidko IA, Schaefer HE, Straumal BB, Valiev RZ, Alexandrov IV, Ivanov M, Reimann K, Reizis AB, Surinas S, Zhilyaev AP (2001) Diffusion and related phenomena in bulk nanostructured materials. Rev Adv Mater Sci 2:1–43CrossRef Baró MD, Kolobov YuV, Ovidko IA, Schaefer HE, Straumal BB, Valiev RZ, Alexandrov IV, Ivanov M, Reimann K, Reizis AB, Surinas S, Zhilyaev AP (2001) Diffusion and related phenomena in bulk nanostructured materials. Rev Adv Mater Sci 2:1–43CrossRef
88.
Zurück zum Zitat Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park
89.
Zurück zum Zitat Miettinen J (2003) Thermodynamic description of the Cu-Ni-Sn system at the Cu-Ni side. Calphad 27:309–318CrossRef Miettinen J (2003) Thermodynamic description of the Cu-Ni-Sn system at the Cu-Ni side. Calphad 27:309–318CrossRef
90.
Zurück zum Zitat Mezbahul-Islam M, Medraj M (2015) Thermodynamic modeling of Cu-Ni-Y system coupled with key experiments. Mater Chem Phys 153:32–47CrossRef Mezbahul-Islam M, Medraj M (2015) Thermodynamic modeling of Cu-Ni-Y system coupled with key experiments. Mater Chem Phys 153:32–47CrossRef
91.
Zurück zum Zitat Kaptay G (2004) A new equation for the temperature dependence of the excess Gibbs energy of solution phases. Calphad 28:115–124CrossRef Kaptay G (2004) A new equation for the temperature dependence of the excess Gibbs energy of solution phases. Calphad 28:115–124CrossRef
92.
Zurück zum Zitat Kaptay G (2012) On the tendency of solutions to tend toward ideal solutions at high temperatures. Metall Mater Trans A 43:531–543CrossRef Kaptay G (2012) On the tendency of solutions to tend toward ideal solutions at high temperatures. Metall Mater Trans A 43:531–543CrossRef
93.
Zurück zum Zitat Hillert M, Jarl M (1978) A model for alloying effects in ferromagnetic metals. Calphad 2:227–238CrossRef Hillert M, Jarl M (1978) A model for alloying effects in ferromagnetic metals. Calphad 2:227–238CrossRef
94.
95.
Zurück zum Zitat Mezey LZ, Giber J (1982) The surface free energies of solid chemical elements: calculation from internal free enthalpies of atomization. Jpn J Appl Phys 21:1569–1571CrossRef Mezey LZ, Giber J (1982) The surface free energies of solid chemical elements: calculation from internal free enthalpies of atomization. Jpn J Appl Phys 21:1569–1571CrossRef
96.
Zurück zum Zitat Pearson WB (1958) A handbook of lattice spacings and structures of metals and alloys. Pergamon Press, London Pearson WB (1958) A handbook of lattice spacings and structures of metals and alloys. Pergamon Press, London
97.
Zurück zum Zitat Kaptay G (2015) Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50:678–687. doi:10.1007/s10853-014-8627-z CrossRef Kaptay G (2015) Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50:678–687. doi:10.​1007/​s10853-014-8627-z CrossRef
98.
Zurück zum Zitat Wynblatt P, Liu Y (1992) Two-dimensional phase transitions associated with surface miscibility gaps. J Vac Sci Technol 10:2709–2717CrossRef Wynblatt P, Liu Y (1992) Two-dimensional phase transitions associated with surface miscibility gaps. J Vac Sci Technol 10:2709–2717CrossRef
99.
Zurück zum Zitat Predel B (1991–1997) Phase equilibria, crystallographic and thermodynamic data of binary alloys, volume 5 of group IV of Landolt-Börnstein Handbook. Springer, Berlin Predel B (1991–1997) Phase equilibria, crystallographic and thermodynamic data of binary alloys, volume 5 of group IV of Landolt-Börnstein Handbook. Springer, Berlin
100.
Zurück zum Zitat Hondros ED (1965) The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron. Proc R Soc 286:479–498CrossRef Hondros ED (1965) The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron. Proc R Soc 286:479–498CrossRef
101.
Zurück zum Zitat Erhart H, Grabke HJ (1981) Equilibrium segregation of phosphorus at grain boundaries of Fe-P, Fe-C-P, Fe-Cr-P and Fe-Cr-C-P alloys. Metal Sci 15:401–408CrossRef Erhart H, Grabke HJ (1981) Equilibrium segregation of phosphorus at grain boundaries of Fe-P, Fe-C-P, Fe-Cr-P and Fe-Cr-C-P alloys. Metal Sci 15:401–408CrossRef
102.
Zurück zum Zitat Briant CL (1985) Grain boundary segregation of phosphorus in 304L stainless steel. Metal Trans 16A:2061–2062CrossRef Briant CL (1985) Grain boundary segregation of phosphorus in 304L stainless steel. Metal Trans 16A:2061–2062CrossRef
103.
Zurück zum Zitat Menyhard M, McMahon CJ Jr (1989) On the effect of molybdenum in the embrittlement of phosphorus-doped iron. Acta metal 31:2287–2295CrossRef Menyhard M, McMahon CJ Jr (1989) On the effect of molybdenum in the embrittlement of phosphorus-doped iron. Acta metal 31:2287–2295CrossRef
104.
Zurück zum Zitat Lejcek P (1994) Characterization of grain boundary segregation in an Fe-Si alloy. Anal Chim Acta 297:165–178CrossRef Lejcek P (1994) Characterization of grain boundary segregation in an Fe-Si alloy. Anal Chim Acta 297:165–178CrossRef
105.
Zurück zum Zitat Lejcek P (1994) On the thermodynamic description of grain boundary segregation in polycrystals. Mater Sci Eng A 185:109–114CrossRef Lejcek P (1994) On the thermodynamic description of grain boundary segregation in polycrystals. Mater Sci Eng A 185:109–114CrossRef
106.
Zurück zum Zitat Cowan JR, Evans HE, Jones RB, Bowen P (1998) The grain-boundary segregation of phosphorus and carbon in an Fe–P–C alloy during cooling. Acta Mater 46:6565–6574CrossRef Cowan JR, Evans HE, Jones RB, Bowen P (1998) The grain-boundary segregation of phosphorus and carbon in an Fe–P–C alloy during cooling. Acta Mater 46:6565–6574CrossRef
107.
Zurück zum Zitat Gurovich BA, Kuleshova EA, YaI Shtrombakh, Zabusov OO, Krasikov EA (2000) Intergranular and intragranular phosphorus segregation in Russian pressure vessel steels due to neutron irradiation. J Nucl Mater 279:259–272CrossRef Gurovich BA, Kuleshova EA, YaI Shtrombakh, Zabusov OO, Krasikov EA (2000) Intergranular and intragranular phosphorus segregation in Russian pressure vessel steels due to neutron irradiation. J Nucl Mater 279:259–272CrossRef
108.
Zurück zum Zitat Sevc PE, Janovec J, Lejcek P, Zahumensky P, Blach J (2002) Thermodynamics of phosphorus grain boundary segregation in 17Cr12Ni austenitic steel. Scr Mater 46:7–12CrossRef Sevc PE, Janovec J, Lejcek P, Zahumensky P, Blach J (2002) Thermodynamics of phosphorus grain boundary segregation in 17Cr12Ni austenitic steel. Scr Mater 46:7–12CrossRef
109.
Zurück zum Zitat Li C, Williams DB (2003) Anisotropy of P grain boundary segregation in a rapidly solidified Fe-0.6 wt% P alloy. Interface Sci 11:461–472CrossRef Li C, Williams DB (2003) Anisotropy of P grain boundary segregation in a rapidly solidified Fe-0.6 wt% P alloy. Interface Sci 11:461–472CrossRef
110.
Zurück zum Zitat Janovec J, Vyrostkova A, Sevc P, Robinson JS, Svoboda M, Krestankova J, Grabke HJ (2003) Precipitation related anomalies in kinetics of phosphorus grain boundary segregation in low alloy steels. Acta Mater 51:4025–4032CrossRef Janovec J, Vyrostkova A, Sevc P, Robinson JS, Svoboda M, Krestankova J, Grabke HJ (2003) Precipitation related anomalies in kinetics of phosphorus grain boundary segregation in low alloy steels. Acta Mater 51:4025–4032CrossRef
111.
Zurück zum Zitat Hurchand H, Kenny SD, Smith R (2005) The interaction of P atoms and radiation defects with grain boundaries in an α-Fe matrix. Nucl Instrum Meth Phys Res 229:92–102CrossRef Hurchand H, Kenny SD, Smith R (2005) The interaction of P atoms and radiation defects with grain boundaries in an α-Fe matrix. Nucl Instrum Meth Phys Res 229:92–102CrossRef
112.
Zurück zum Zitat Nishiyama Y, Onizawa K, Suzuki M, Anderegg JW, Nagai Y, Toyama T, Hasegawa M, Kameda J (2008) Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels. Acta Mater 56:4510–4521CrossRef Nishiyama Y, Onizawa K, Suzuki M, Anderegg JW, Nagai Y, Toyama T, Hasegawa M, Kameda J (2008) Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels. Acta Mater 56:4510–4521CrossRef
113.
Zurück zum Zitat Yuasa M, Mabuchi M (2011) First-principles study on enhanced grain boundary embrittlement of iron by phosphorus segregation. Mater Trans 52:1369–1373CrossRef Yuasa M, Mabuchi M (2011) First-principles study on enhanced grain boundary embrittlement of iron by phosphorus segregation. Mater Trans 52:1369–1373CrossRef
114.
Zurück zum Zitat Kim BJ, Kasada R, Kimura A, Tanigawa H (2012) Evaluation of grain boundary embrittlement of phosphorus added F82H steel by SSTT. J Nucl Mater 421:153–159CrossRef Kim BJ, Kasada R, Kimura A, Tanigawa H (2012) Evaluation of grain boundary embrittlement of phosphorus added F82H steel by SSTT. J Nucl Mater 421:153–159CrossRef
115.
Zurück zum Zitat Wang K, Yang C, Si H (2013) Effect of non-equilibrium grain-boundary segregation of phosphorus on the intermediate-temperature ductility minimum of an Fe–17Cr alloy. Mater Sci Eng A 587:228–232CrossRef Wang K, Yang C, Si H (2013) Effect of non-equilibrium grain-boundary segregation of phosphorus on the intermediate-temperature ductility minimum of an Fe–17Cr alloy. Mater Sci Eng A 587:228–232CrossRef
116.
Zurück zum Zitat Gurovich B, Kuleshova E, Zabusov O, Fedotova S, Frolov A, Saltykov M, Maltsev D (2013) Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement. J Nucl Mater 435:25–31CrossRef Gurovich B, Kuleshova E, Zabusov O, Fedotova S, Frolov A, Saltykov M, Maltsev D (2013) Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement. J Nucl Mater 435:25–31CrossRef
117.
Zurück zum Zitat Ohtani H, Hanaya N, Hasebe M, Teraoka SI, Abe M (2006) Thermodynamic analysis of the Fe-Ti-P ternary system by incorporating first-principles calculations into the CALPHAD approach. Calphad 30:147–158CrossRef Ohtani H, Hanaya N, Hasebe M, Teraoka SI, Abe M (2006) Thermodynamic analysis of the Fe-Ti-P ternary system by incorporating first-principles calculations into the CALPHAD approach. Calphad 30:147–158CrossRef
118.
Zurück zum Zitat Emsley J (1989) The elements. Clarendon Press, Oxford Emsley J (1989) The elements. Clarendon Press, Oxford
119.
Zurück zum Zitat Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion. IFI/Plenum, New YorkCrossRef Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion. IFI/Plenum, New YorkCrossRef
Metadaten
Titel
Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation
verfasst von
G. Kaptay
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9533-8

Weitere Artikel der Ausgabe 4/2016

Journal of Materials Science 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.