Skip to main content

2022 | OriginalPaper | Buchkapitel

Modelling of Arbitrary Shaped Channels and Obstacles by Distance Function

verfasst von : Kristína Kovalčíková Ďuračíková, Alžbeta Bugáňová, Ivan Cimrák

Erschienen in: Bioinformatics and Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical simulation is a tool used in multiple scientific domains. There is a wide range of simulations where we model a flow of fluid in a specific geometry, for example in simulations of blood flow in microfluidic channels. In such cases, a complex shape of channels has to be defined by describing its boundaries and rigid obstacles. The purpose of this study is develop a method of defining boundaries and obstacle objects with complex and non-trivial shapes in such numerical simulations. The obstacle or a boundary needs to be described only by a cloud of points defining its surface. Based on this point cloud a distance function determining the position and the shape of the obstacle is defined in the whole simulation domain. This general method is presented on a concrete examples involving several simulations performed within a simulation package ESPResSo. The new method of obstacle creation gives excellent results in terms of the accuracy and simulation time consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zou, Ch., Yin, Y.: Simulation of fluid and complex obstacle coupling based on narrow band FLIP method. Water 10, 811 (2018)CrossRef Zou, Ch., Yin, Y.: Simulation of fluid and complex obstacle coupling based on narrow band FLIP method. Water 10, 811 (2018)CrossRef
2.
Zurück zum Zitat Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R.: CFD simulation of flow behind overflooded obstacle. J. Hydrol. Hydromech. 66, 448–456 (2018)CrossRef Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R.: CFD simulation of flow behind overflooded obstacle. J. Hydrol. Hydromech. 66, 448–456 (2018)CrossRef
3.
Zurück zum Zitat Magdalena, I., Hariz, A.A.A., Farid, M., Kusuma, M.S.B.: Numerical studies using staggered finite volume for dam break flow with an obstacle through different geometries. Results Appl. Math. 12, 100193 (2021)CrossRef Magdalena, I., Hariz, A.A.A., Farid, M., Kusuma, M.S.B.: Numerical studies using staggered finite volume for dam break flow with an obstacle through different geometries. Results Appl. Math. 12, 100193 (2021)CrossRef
4.
Zurück zum Zitat Pipp, P., Hočevar, M., Dular, M.: Challenges of numerical simulations of cavitation reactors for water treatment - an example of flow simulation inside a cavitating microchannel. Ultrason. Sonochem. 77, 105663 (2021)CrossRef Pipp, P., Hočevar, M., Dular, M.: Challenges of numerical simulations of cavitation reactors for water treatment - an example of flow simulation inside a cavitating microchannel. Ultrason. Sonochem. 77, 105663 (2021)CrossRef
5.
Zurück zum Zitat Luo, L.-S., Krafczyk, M., Shyy, W.: Encyclopedia of Aerospace Engineering: Lattice Boltzmann Method for Computational Fluid Dynamics. In: Blockley, R., Shyy, W., (eds.) (2010) Luo, L.-S., Krafczyk, M., Shyy, W.: Encyclopedia of Aerospace Engineering: Lattice Boltzmann Method for Computational Fluid Dynamics. In: Blockley, R., Shyy, W., (eds.) (2010)
6.
Zurück zum Zitat Zeiser, T., Lammers, P., Klemm, E., Li, Y.W., Bernsdorf, J., Brenner, G.: CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Eng. Sci. 56, 1697–1704 (2001)CrossRef Zeiser, T., Lammers, P., Klemm, E., Li, Y.W., Bernsdorf, J., Brenner, G.: CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Eng. Sci. 56, 1697–1704 (2001)CrossRef
8.
Zurück zum Zitat Yakhlef, O., Murea, C.M.: Numerical simulation of dynamic fluid-structure interaction with elastic structure-rigid obstacle contact. Fluids. 6, 51 (2021)CrossRef Yakhlef, O., Murea, C.M.: Numerical simulation of dynamic fluid-structure interaction with elastic structure-rigid obstacle contact. Fluids. 6, 51 (2021)CrossRef
10.
Zurück zum Zitat Jančigová, I., Kovalčíková, K., Weeber, R., Cimrák, I.: PyOIF: computational tool for modelling of multi-cell flows in complex geometries. PLoS Comput. Biol. 16(10), e1008249 (2020)CrossRef Jančigová, I., Kovalčíková, K., Weeber, R., Cimrák, I.: PyOIF: computational tool for modelling of multi-cell flows in complex geometries. PLoS Comput. Biol. 16(10), e1008249 (2020)CrossRef
11.
Zurück zum Zitat Jančigová, I., Kovalčíková, K., Bohiniková, A., Cimrák, I.: Spring-network model of red blood cell: from membrane mechanics to validation. Int. J. Numer. Meth. Fluids 92, 1368–1393 (2020)CrossRef Jančigová, I., Kovalčíková, K., Bohiniková, A., Cimrák, I.: Spring-network model of red blood cell: from membrane mechanics to validation. Int. J. Numer. Meth. Fluids 92, 1368–1393 (2020)CrossRef
14.
Zurück zum Zitat Bachratý, H., Bachratá, K., Chovanec, M., Kajánek, F., Smiešková, M., Slavík, M.: Simulation of blood flow in microfluidic devices for analysing of video from real experiments. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 279–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78723-7_24CrossRef Bachratý, H., Bachratá, K., Chovanec, M., Kajánek, F., Smiešková, M., Slavík, M.: Simulation of blood flow in microfluidic devices for analysing of video from real experiments. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 279–289. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-78723-7_​24CrossRef
15.
Zurück zum Zitat Bouchiba, H., et al. Computational fluid dynamics on 3D point set surfaces. J. Comput. Phys. 7, 100069 (2020) Bouchiba, H., et al. Computational fluid dynamics on 3D point set surfaces. J. Comput. Phys. 7, 100069 (2020)
16.
Zurück zum Zitat Kosa, B., Mikula, K.: Direct simple computation of middle surface between 3D point clouds and/or discrete surfaces by tracking sources in distance function calculation algorithms (2021), arXiv:2112.09808 Kosa, B., Mikula, K.: Direct simple computation of middle surface between 3D point clouds and/or discrete surfaces by tracking sources in distance function calculation algorithms (2021), arXiv:​2112.​09808
17.
Zurück zum Zitat Roehm, D., Arnold, A.: Lattice Boltzmann simulations on GPUs with ESPResSo. Eur. Phys. J. Special Topics. 210, 89–100 (2012)CrossRef Roehm, D., Arnold, A.: Lattice Boltzmann simulations on GPUs with ESPResSo. Eur. Phys. J. Special Topics. 210, 89–100 (2012)CrossRef
Metadaten
Titel
Modelling of Arbitrary Shaped Channels and Obstacles by Distance Function
verfasst von
Kristína Kovalčíková Ďuračíková
Alžbeta Bugáňová
Ivan Cimrák
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-07704-3_3

Premium Partner